The lateral line system in salamanders consists of mechanoreceptive neuromasts and pit organs, distributed in lines on the head and trunk, and electroreceptive ampullary organs located adjacent to the cephalic lines of mechanoreceptors. Although numerous studies have documented that neuromast and pit organs and the cranial nerves that innervate these receptors arise from a dorsolateral series of placodes, there is no agreement concerning the number of these placodes, the specific groups of receptors that arise from them, or the embryonic origin of ampullary organs. A developmental model was recently proposed (Northcutt et al., 1994) in which all these placodes, except for the most posterior one, elongate to form sensory ridges whose central zones initially form neuromast and pit organ primordia and whose lateral zones subsequently form ampullary primordia. To test this model, individual placodes were unilaterally extirpated, or placodes from pigmented wild-type axolotl embryos were homotopically or heterotopically transplanted into albino hosts. Extirpation resulted in the loss of all three receptor classes, and both homotopic and heterotopic transplants produced pigmented receptors of all three classes in albino hosts. The receptors in the heterotopic transplants still formed lines which occasionally retained their normal orientation despite differentiating in an ectopic environment. These experiments demonstrated that, as previously postulated, specific lines of neuromasts and pit organs do arise from each placode, and ampullary organs also arise from many of the same placodes. The distribution of receptors that develop following incomplete extirpation or heterotopic transplantation also indicates that each placode is patterned regarding receptor classes and orientation prior to sensory ridge formation.
The differentiation of neural crest and ectodermal placodes was examined in the axolotl in order to clarify the contribution of these tissues to the formation of the sensory ganglia of the branchiomeric and lateral line cranial nerves in salamanders. The most rostral branchiomeric nerves, the profundal and trigeminal nerves, appear to arise solely from an ectodermal placode and from neural crest, respectively. The sensory ganglia of the more caudal branchiomeric nerves--the facial, glossopharyngeal, and vagal nerves--are formed by a medial component that differentiates from the dorsomedial surface of migrating bands of neural crest associated with each of the developing branchial arches and with one or more lateral components that arise from epibranchial placodes located immediately dorsal and caudal to each pharyngeal pouch. Neuroblasts destined to form these sensory ganglia begin to differentiate from the epibranchial placodes as early as stage 26, whereas neural crest-derived neuroblasts can be recognized by stage 30. Centrally directed neurites of both groups of neuroblasts enter the medulla by stage 34, and their peripherally directed neurites form recognizable rami by stage 35. Five cranial lateral line nerves, in addition to the octaval nerve, can be recognized in axolotls. Each of these nerves arises from a separate dorsolateral placode that initially gives rise to the neuroblasts of a sensory ganglion whose peripheral neurites innervate sensory receptors subsequently formed from each placode. The time course of the differentiation of these nerves and receptors is comparable to that of the branchiomeric nerves. The possible roles of rhombomeres and their associated regulatory genes and pharyngeal pouches in the induction and specification of neural crest and ectodermal placodes are explored.
Small heat-stress proteins (sHsps) are the most abundant stress-induced proteins with up to 20 different members in higher plants. In the cytoplasm, two different classes can be distinguished. Two cDNA clones from tomato Lycopersicon peruvianum (L.) Mill., each coding for one of the cytoplasmic sHsp subfamilies, were analyzed with respect to their transcript and protein expression, genome organization and chaperone activity. Neither type was present under control conditions but both appeared upon heat stress and in mature fruits. Expression of the class II transcript was found to be induced at slightly lower temperatures than the class I transcript. Protein analysis using class-specific antibodies revealed an identical expression pattern of both corresponding proteins. Transient expression in an Arabidopsis thaliana (L.) Heynh. cell culture showed that, despite the difference in their amino acid sequence, both classes are functionally active as chaperones in vivo, as shown by their ability to prevent thermal inactivation of firefly luciferase in a cellular environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.