Molecular dynamics simulations are used to generate an ensemble of saddles of the potential energy of a Lennard-Jones liquid. Classifying all extrema by their potential energy u and number of unstable directions k, a well-defined relation k(u) is revealed. The degree of instability of typical stationary points vanishes at a threshold potential energy u(th), which lies above the energy of the lowest glassy minima of the system. The energies of the inherent states, as obtained by the Stillinger-Weber method, approach u(th) at a temperature close to the mode-coupling transition temperature T(c).
Mathematical Physics Preprint Archive: math-ph/9808004The objects of the present study are one-parameter semigroups generated by Schrödinger operators with fairly general electromagnetic potentials. More precisely, we allow scalar potentials from the Kato class and impose on the vector potentials only local Kato-like conditions. The configuration space is supposed to be an arbitrary open subset of multidimensional Euclidean space; in case that it is a proper subset, the Schrödinger operator is rendered symmetric by imposing Dirichlet boundary conditions. We discuss the continuity of the image functions of the semigroup and show local-norm-continuity of the semigroup in the potentials. Finally, we prove that the semigroup has a continuous integral kernel given by a Brownian-bridge expectation. Altogether, the article is meant to extend some of the results in B. Simon's landmark paper [Bull. Amer. Math. Soc. 7 (1982) 447] to non-zero vector potentials and more general configuration spaces.
Shear relaxation and dynamic density fluctuations are studied within a Rouse model, generalized to include the effects of permanent random crosslinks. We derive an exact correspondence between the static shear viscosity and the resistance of a random resistor network. This relation allows us to compute the static shear viscosity exactly for uncorrelated crosslinks. For more general percolation models, which are amenable to a scaling description, it yields the scaling relation k = φ − β for the critical exponent of the shear viscosity. Here β is the thermal exponent for the gel fraction and φ is the crossover exponent of the resistor network. The results on the shear viscosity are also used in deriving upper and lower bounds on the incoherent scattering function in the long-time limit, thereby corroborating previous results. 61.25.Hq, 64.60.Ht, 61.20.Lc
The time-dependent stress relaxation for a Rouse model of a cross-linked polymer melt is completely determined by the spectrum of eigenvalues of the connectivity matrix. The latter has been computed analytically for a mean-field distribution of cross-links. It shows a Lifshitz tail for small eigenvalues and all concentrations below the percolation threshold, giving rise to a stretched exponential decay of the stress relaxation function in the sol phase. At the critical point the density of states is finite for small eigenvalues, resulting in a logarithmic divergence of the viscosity and an algebraic decay of the stress relaxation function. Numerical diagonalization of the connectivity matrix supports the analytical findings and has furthermore been applied to cluster statistics corresponding to random bond percolation in two and three dimensions.
Abstract. -We investigate the static shear viscosity on the sol side of the vulcanization transition within a minimal mesoscopic model for the Rouse-dynamics of a randomly crosslinked melt of phantom polymers. We derive an exact relation between the viscosity and the resistances measured in a corresponding random resistor network. This enables us to calculate the viscosity exactly for an ensemble of crosslinks without correlations. The viscosity diverges logarithmically as the critical point is approached. For a more realistic ensemble of crosslinks amenable to the scaling description of percolation, we prove the scaling relation k = φ − β between the critical exponent k of the viscosity, the thermal exponent β associated with the gel fraction and the crossover exponent φ of a random resistor network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.