Viral abundance in soils can range from below detection limits in hot deserts to over 1 billion per gram in wetlands. Abundance appears to be strongly influenced by water availability and temperature, but a lack of informational standards creates difficulties for cross-study analysis. Soil viral diversity is severely underestimated and undersampled, although current measures of viral richness are higher for soils than for aquatic ecosystems. Both morphometric and metagenomic analyses have raised questions about the prevalence of nontailed, ssDNA viruses in soils. Soil is complex and critically important to terrestrial biodiversity and human civilization, but impacts of viral activities on soil ecosystem services are poorly understood. While information from aquatic systems and medical microbiology suggests the potential for viral influences on nutrient cycles, food web interactions, gene transfer, and other key processes in soils, very few empirical data are available. To understand the soil virome, much work remains.
The importance of viruses in marine microbial ecology has been established over the past decade. Specifically, viruses influence bacterial abundance and community composition through lysis and alter bacterial genetic diversity through transduction and lysogenic conversion. By contrast, the abundance and distribution of viruses in soils are almost completely unknown. This study describes the abundance and diversity of autochthonous viruses in six Delaware soils: two agricultural soils, two coastal plain forest soils, and two piedmont forest soils. Viral abundance was measured using epifluorescence microscopy, while viral diversity was assessed from morphological data obtained through transmission electron microscopy. Extracted soil virus communities were dominated by bacteriophages that demonstrated a wide range of capsid diameters (20 nm to 160 nm) and morphologies, including filamentous forms and phages with elongated capsids. The reciprocal Simpson's index suggests that forest soils harbor more diverse assemblages of viruses, particularly in terms of morphological distribution. Repeated extractions of virus-like particles (VLPs) from soils indicated that the initial round of extraction removes approximately 70% of extractable viruses. Higher VLP abundances were observed in forest soils (1.31 ؋ 10 9 to 4.17 ؋ 10 9 g ؊1 dry weight) than in agricultural soils (8.7 ؋ 10 8 to 1.1 ؋ 10 9 g ؊1 dry weight). Soil VLP abundance was significantly correlated to moisture content (r ؍ 0.988) but not to soil texture. Land use (agricultural or forested) was significantly correlated to both bacterial (r ؍ 0.885) and viral (r ؍ 0.812) abundances, as were soil organic matter and water content. Thus, land use is a significant factor influencing viral abundance and diversity in soils.
Mycobacteriophages are viruses that infect mycobacterial hosts such as Mycobacterium smegmatis and Mycobacterium tuberculosis. All mycobacteriophages characterized to date are dsDNA tailed phages, and have either siphoviral or myoviral morphotypes. However, their genetic diversity is considerable, and although sixty-two genomes have been sequenced and comparatively analyzed, these likely represent only a small portion of the diversity of the mycobacteriophage population at large. Here we report the isolation, sequencing and comparative genomic analysis of 18 new mycobacteriophages isolated from geographically distinct locations within the United States. Although no clear correlation between location and genome type can be discerned, these genomes expand our knowledge of mycobacteriophage diversity and enhance our understanding of the roles of mobile elements in viral evolution. Expansion of the number of mycobacteriophages grouped within Cluster A provides insights into the basis of immune specificity in these temperate phages, and we also describe a novel example of apparent immunity theft. The isolation and genomic analysis of bacteriophages by freshman college students provides an example of an authentic research experience for novice scientists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.