Cells preconditioned with low doses of low-linear energy transfer (LET) ionizing radiation become more resistant to later challenges of radiation. The mechanism(s) by which cells adaptively respond to radiation remains unclear, although it has been suggested that DNA repair induced by low doses of radiation increases cellular radioresistance. Recent gene expression profiles have consistently indicated that proteins involved in the nucleotide excision repair pathway are up-regulated after exposure to ionizing radiation. Here we test the role of the nucleotide excision repair pathway for adaptive response to gamma radiation in vitro. Wild-type CHO cells exhibited both greater survival and fewer HPRT mutations when preconditioned with a low dose of gamma rays before exposure to a later challenging dose. Cells mutated for ERCC1, ERCC3, ERCC4 or ERCC5 did not express either adaptive response to radiation; cells mutated for ERCC2 expressed a survival adaptive response but no mutation adaptive response. These results suggest that some components of the nucleotide excision repair pathway are required for phenotypic low-dose induction of resistance to gamma radiation in mammalian cells.
DNA double-strand breaks repaired through nonhomologous end joining require no extended sequence homology as a template for the repair. A subset of end-joining events, termed microhomology-mediated end joining, occur between a few base pairs of homology, and such pathways have been implicated in different human cancers and genetic diseases. Here we investigated the effect of exposure of yeast and mammalian cells to ionizing radiation on the frequency and mechanism of rejoining of transfected unirradiated linear plasmid DNA. Cells were exposed to γ radiation prior to plasmid transfection; subsequently the rejoined plasmids were recovered and the junction sequences were analyzed. In irradiated yeast cells, 68% of recovered plasmids contained microhomologies, compared to only 30% from unirradiated cells. Among them 57% of events used ≥4 bp of microhomology compared to only 11% from unirradiated cells. In irradiated mammalian cells, 54% of plasmids used ≥4 bp of microhomology compared to none from unirradiated cells. We conclude that exposure of yeast and mammalian cells to radiation prior to plasmid transfection enhances the frequency of microhomology-mediated end-joining events in trans. If such events occur within genomic locations, they may be involved in the generation of large deletions and other chromosomal aberrations that occur in cancer cells.
The yeast DEL assay is an effective method for measuring intrachromosomal recombination events resulting in DNA deletions that when occurring in mammalian cells are often associated with genomic instability and carcinogenesis. Here we used the DEL assay to measure γ-ray-induced DNA deletions throughout different phases of yeast culture growth. Whereas yeast survival differed by only up to twofold throughout the yeast growth phase, proliferating cells in lag and early exponential growth phases were tenfold more sensitive to ionizing radiation-induced DNA deletions than cells in stationary phase. Radiation-induced DNA deletion potential was found to correlate directly with the fraction of cells in S/G2 phase. The ability of the antioxidants l-ascorbic acid and DMSO to protect against radiation-induced DNA deletions was also measured within the different phases of yeast culture growth. Yeast cells in lag and early exponential growth phases were uniquely protected by antioxidant treatment, whereas nondividing cells in stationary phase could not be protected against the induction of DNA deletions. These results are compared with those from mammalian cell studies, and the implications for radiation-induced carcinogenesis and radioprotection are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.