Fast and accurate assessment of within-field variation is essential for detecting field-wide heterogeneity and contributing to improvements in the management of agricultural lands. The goal of this paper is to provide an overview of field scale characterization by electromagnetic induction, firstly with a focus on the applications of EM38 to salinity, soil texture, water content and soil water turnover, soil types and boundaries, nutrients and N-turnover and soil sampling designs. Furthermore, results concerning special applications in agriculture, horticulture and archaeology are included. In addition to these investigations, this survey also presents a wide range of practical methods for use. Secondly, the effectiveness of conductivity readings for a specific target in a specific locality is determined by the intensity at which soil factors influence these values in relationship to the desired information. The interpretation and utility of apparent electrical conductivity (ECa) readings are highly location- and soil-specific, so soil properties influencing the measurement of ECa must be clearly understood. From the various calibration results, it appears that regression constants for the relationships between ECa, electrical conductivity of aqueous soil extracts (ECe), texture, yield, etc., are not necessarily transferable from one region to another. The modelling of ECa, soil properties, climate and yield are important for identifying the location to which specific utilizations of ECa technology (e.g., ECa−texture relationships) can be appropriately applied. In general, the determination of absolute levels of ECa is frequently not possible, but it appears to be quite a robust method to detect relative differences, both spatially and temporally. Often, the use of ECa is restricted to its application as a covariate or the use of the readings in a relative sense rather than as absolute terms.
Near-infrared reflectance spectroscopy (NIRS) was successfully used in this study to measure soil properties, mainly C and N, requiring spectral pre-treatments. Calculations in this evaluation were carried out using multivariate statistical procedures with preceding pre-treatment procedures of the spectral data. Such transformations could remove noise, highlight features, and extract essential wavelengths for quantitative predictions. This frequently significantly improved the predictions. Since selecting the appropriate transformation was not straightforward due to the large numbers of available methods, more comprehensive insight into choosing appropriate and optimized pre-treatments was required. Therefore, the objectives of this study were (i) to compare various pre-processing transformations of spectral data to determine their suitability for modeling soil C and N using NIR spectra (55 pre-treatment procedures were tested), and (ii) to determine which wavelengths were most important for the prediction of C and N. The investigations were carried out on an arable field in South Germany with a soil type of Calcaric Fluvic Relictigleyic Phaeozem (Epigeoabruptic and Pantoclayic), created in the flooding area of the Isar River. The best fit and highest model accuracy for the C (Ct, Corg, and Ccarb) and N models in the calibration and validation modes were achieved using derivations with Savitzky–Golay (SG). This enabled us to calculate the Ct, Corg, and N with an R2 higher than 0.98/0.86 and an ratio of performance to the interquartile range (RPIQ) higher than 10.9/4.1 (calibration/validation).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.