Intrinsic optical properties, such as optical birefringence, may serve as a tool for minimally invasive neuroimaging methods with high spatiotemporal resolution to aid in the study of neuronal activation patterns. To facilitate imaging neuronal activity by sensing dynamic birefringence, temporal characteristics behind the signal must be better understood. We have developed a novel nerve chamber to investigate changes in birefringence at the stimulation site, and at distances ~4-28 mm from that site. Using crustacean nerves with either heterogeneous or homogeneous size distributions of axon diameters, we found that the gradual (slow) recovery of the crossed-polarized signal is not explained by the arrival times of action potentials in smaller axons. Through studying the effects of stimulating current and voltage pulses, we hypothesize that the recovery may be caused by a capacitive-like coupling between firing axons and adjacent tissue structures, and we report data consistent with this hypothesis. This study will aid in the utilization of action-potential-related changes in birefringence to study fast changes in neuronal network activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.