The operation and aerodynamic performance of a helicopter rotor is strongly affected by the structure of its wake, in particular regarding vortex-vortex interactions of hovering rotors. Rotor simulations using modern computational methods have the potential to capture high levels of detail, which recently triggered discussions of secondary vortex braids entangling the primary tip vortices. These structures are highly dependent on the numerical settings and need experimental validation. The current work investigates the wake of a subscale rotor in ground effect by time-resolved and volumetric flow-field measurements using the "Shake-The-Box" technique. Both the Lagrangian tracks of the flow tracers and the derived gradient-based vortex criteria clearly verify the existence of secondary vortices. A post-processing scheme is applied to isolate these vortices in larger data sets. No distinct spatial organization of the structures was observed, but a slightly preferred sense of rotation which agrees to the shear of the wake swirl. The secondary structures were created shortly downstream of the rotor blades, starting at wake ages of approximately 75 • .
The presented work tackles the lack of experimental investigations of unsteady laminar-turbulent boundary-layer transition on rotor blades at cyclic pitch actuation, which are important for accurate performance predictions of helicopters in forward flight. Unsteady transition positions were measured on the blade suction side of a four-bladed subscale rotor by means of non-intrusive differential infrared thermography (DIT). Experiments were conducted at different rotation rates corresponding to Mach and Reynolds numbers at 75% rotor radius of up to M 75 = 0.21 and Re 75 = 3.3 × 10 5 and with varying cyclic blade pitch settings. The setup allowed transition to be measured across the outer 54% of the rotor radius. For comparison, transition was also measured using conventional infrared thermography for steady cases with collective pitch settings only. The study is complemented by numerical simulations including boundary-layer transition modeling based on semi-empirical criteria. DIT results reveal the upstream and downstream motion of boundary-layer transition during upstroke and downstroke, a reasonable comparison to experimental results obtained using the already established c p method, and noticeable agreement with numerical simulations. The result is the first systematic study of unsteady boundary-layer transition on a rotor suction side by means of DIT including a comparison to numerical computations. Abbreviations AHD Boundary-layer transition criterion according to Arnal, Habiballah and Delcourt CFD Computational fluid dynamics DIT Differential infrared thermography
The only peer-reviewed scientific journal dedicated to vertical flight technology • Covers research, analysis, design, manufacturing, testing, and operations and support of helicopters, rotorcraft and other vertical takeoff and landing (VTOL) aircraft • Online subscriptions include downloadable PDFs for all issues since inception in 1956
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.