Protein kinase C (PKC)θ is an established component of the immunological synapse and has been implicated in the control of AP-1 and NF-κB. To study the physiological function of PKCθ, we used gene targeting to generate a PKCθ null allele in mice. Consistently, interleukin 2 production and T cell proliferative responses were strongly reduced in PKCθ-deficient T cells. Surprisingly, however, we demonstrate that after CD3/CD28 engagement, deficiency of PKCθ primarily abrogates NFAT transactivation. In contrast, NF-κB activation was only partially reduced. This NFAT transactivation defect appears to be secondary to reduced inositol 1,4,5-trisphosphate generation and intracellular Ca2+ mobilization. Our finding suggests that PKCθ plays a critical and nonredundant role in T cell receptor–induced NFAT activation.
Prostatic stromal cells respond to hypoxia by upregulation of secretion of several growth factors suggesting that hypoxia can trigger prostatic growth. Therefore, hypoxia might be a key factor contributing to the pathogenesis of BPH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.