Surface relaxivity (SR) is required to convert nuclear magnetic resonance (NMR) relaxation times to pore size distributions (PSD).Current methodology uses a constant value of SR for an entire well, formation, or rock type, regardless of compositional and textural variations. This approach might result in significant errors in PSD calculation in the presence of paramagnetic minerals that affect SR values. We present SR calculations for Niobrara and Haynesville samples calculated from measurements of surface to volume ratio (SVR) and from measurements of the average pore radius. We measured the transverse relaxation time (T 2) with a low field (2 MHz) NMR instrument. We also measured porosity and PSD using nitrogen adsorption (N2). The total specific surface area (TSSA) was measured using N2 and cation exchange capacity (CEC) equivalent surface area. We find that paramagnetic impurities, chlorite and illite in the Haynesville and illite-smectite in the Niobrara, dominate the NMR response and the calculated SR. There is a linear relation between the paramagnetic clay content and SR. The value of SR depends on the calculation method and on the measurement technique for TSSA and TPV. Presence of smectite increased the uncertainty in TSSA and TPV and consequently SR calculations in Niobrara. This uncertainty is lower for high maturity (gas window) Haynesville samples since smectite is absent in these samples. Our SR-clay correlations can be used to calculate SR from mineralogy and invert NMR logs and laboratory NMR data to PSD.
Effects of dissolved paramagnetic oxygen (O2) in water on 1H nuclear magnetic resonance (NMR) Carr-Purcell-Meiboom-Gill (CPMG) experiments is evaluated at a 1H Larmor frequency of 2 MHz. Dissolution of O2 into water significantly reduces the 1H transverse relaxation coefficient (T2). For deoxygenated water, T2 is 3388 ms, water at ambient atmospheric conditions (7.4 mg/L O2) exhibits a T2 of 2465 ms, and dissolution of 2710 mg/L O2 further reduces T2 to 36 ms. The results were fit with an empirical model to facilitate prediction of T2 times for bulk water as a function of paramagnetic oxygen concentrations in solution. Dissolved O2 also greatly influences 1H NMR CPMG experiments of confined water in a model system composed of Berea sandstone. For this system, 90 mg/L O2 in H2O enhances T2 relaxation of bulk water such that the relaxation time is comparable to physically confined water in the sandstone pores. Given the sensitivity of NMR T2 coefficients to paramagnetic oxygen, low-field NMR-based characterization of fluid and porous media structure requires control of dissolved oxygen, as geospatial variation in the partial pressure of O2 alone is expected to perturb fluid and pore relaxation times by up to 60 and 36%, respectively.
Sequestration of industrial carbon dioxide (CO2) in deep geological saline aquifers is needed to mitigate global greenhouse gas emissions; monitoring the mechanical integrity of reservoir formations is essential for effective and safe operations. Clogging of fluid transport pathways in rocks from CO2-induced salt precipitation reduces injectivity and potentially compromises the reservoir storage integrity through pore fluid pressure build-up. Here, we show that early warning of salt precipitation can be achieved through geophysical remote sensing. From elastic P- and S-wave velocity and electrical resistivity monitoring during controlled laboratory CO2 injection experiments into brine-saturated quartz-sandstone of high porosity (29%) and permeability (1660 mD), and X-ray CT imaging of pore-scale salt precipitation, we were able to observe, for the first time, how CO2-induced salt precipitation leads to detectable geophysical signatures. We inferred salt-induced rock changes from (i) strain changes, (ii) a permanent ~ 1.5% decrease in wave velocities, linking the geophysical signatures to salt volume fraction through geophysical models, and (iii) increases of porosity (by ~ 6%) and permeability (~ 7%). Despite over 10% salt saturation, no clogging effects were observed, which suggests salt precipitation could extend to large sub-surface regions without loss of CO2 injectivity into high porosity and permeability saline sandstone aquifers.
Injecting fluids into underground geologic structures is crucial for the development of long-term strategies for managing captured carbon and facilitating sustainable energy extraction operations. We have previously reported that the injection of metal–organic frameworks (MOFs) into the subsurface can enhance seismic monitoring tools to track fluids and map complex structures, reduce risk, and verify containment in carbon storage reservoirs because of their absorption capacity of low-frequency seismic waves. Here, we demonstrate that water-based Cr/Zn/Zr MOF colloidal suspensions (nanofluids) are multimodal geophysical contrast agents that enhance near-wellbore logging tools. Based on experimental fluid-only measurements, MIL-101(Cr), ZIF-8, and UiO-66 nanofluids have distinct complex conductivity and/or low-field nuclear magnetic resonance (NMR) signatures that are relevant to field-deployed technologies, implying the potential to enhance near-wellbore monitoring of CO2 injection and associated processes with downhole logging tools. Small- and wide-angle X-ray scattering characterization of ∼0.5 wt % MIL-101(Cr) suspensions confirmed phase stability and provided insight into the fractal nature of colloidal nanoparticles. Finally, low-field (2 MHz) NMR measurements of MIL-101(Cr) nanofluid injection into a prototypical Berea sandstone demonstrate how paramagnetic high-surface area MOFs may dominate the relaxation times of hydrogen-bearing fluids in porous geologic matrices, enhancing the mapping of near-surface and near-wellbore transport pathways and advancing sustainable subsurface energy technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.