Timely herbicide applications for no-till soybean can be challenging given the diverse communities of both winter and summer annual weeds that are often present. Research was conducted to compare various approaches for nonselective and preplant weed control for no-till soybean. Nonselective herbicide application timings of fall (with and without a residual herbicide) followed by early-spring (4 wk before planting), late-spring (1 to 2 wk before planting), or sequential-spring applications (4 wk before planting and at planting) were compared. Spring applications also included a residual herbicide. For consistent control of winter annual weeds, two herbicide applications were needed, either a fall application followed by a spring application or sequential-spring applications. When a fall herbicide application did not include a residual herbicide, greater winter annual weed control resulted from early- or sequential-spring treatments. However, application timings that effectively controlled winter annual weeds did not effectively control summer annual weeds that have a prolonged emergence period. Palmer amaranth and large crabgrass control at 4 wk after planting was better when the spring residual treatment (chlorimuron plus metribuzin) was applied 1 to 2 wk before planting or at planting, compared with 4 wk before planting. Results indicate that in order to optimize control, herbicide application programs in soybean should coincide with seasonal growth cycles of winter and summer annual weeds.
Cereal rye as a cover crop is often used to improve soil health and as part of integrated weed management programs. Despite this, cereal rye biomass is often not managed for optimal weed suppression. This study evaluated the effects of managing cereal rye as part of an integrated weed management strategy in soybean. Factors consisted of levels of cereal rye management (no cereal rye, no nitrogen, or 20 kg/ha of nitrogen); cereal rye termination timing (20 or 10 d before soybean planting); and residual herbicide treatment applied at cereal rye termination (with or without). Winter annual weed control with cereal rye was generally greater compared to no cereal rye. Winter annual weed control was consistently better when cereal rye was terminated at 20 d before soybean planting compared to 10 d; while summer annual weed control was improved if termination was delayed. Effect of cereal rye management on summer annual weed control varied by weed species. In the absence of residual herbicides, Palmer amaranth control responded to the different levels of cereal rye management. However, morningglory spp. only responded to rye with supplemental N applications. Large crabgrass control was similar for treatments containing cereal rye, regardless of nitrogen input. Our results demonstrate the importance of cover crop management when incorporating cereal rye into an integrated weed management program for soybean.
Weeds can cause significant yield loss in watermelon production systems. Commercially acceptable weed control is difficult to achieve, even with heavy reliance on herbicides. A study was conducted to evaluate a spring-seeded cereal rye cover crop with different herbicide application timings for weed management between row middles in watermelon production systems. Common lambsquarters and pigweed species (namely, Palmer amaranth and smooth pigweed) densities and biomasses were often lower with cereal rye compared with no cereal rye, regardless of herbicide treatment. The presence of cereal rye did not negatively influence the number of marketable watermelon fruit, but average marketable fruit weight in cereal rye versus no cereal rye treatments varied by location. These results demonstrate that a spring-seeded cereal rye cover crop can help reduce weed density and weed biomass, and potentially enhance overall weed control. Cereal rye alone did not provide full-season weed control, so additional research is needed to determine the best methods to integrate spring cover cropping with other weed management tactics in watermelon for effective, full-season control.
Crop safety is an important consideration in determining PRE herbicide application, especially when multiple herbicide sites-of-action are used. This research examined relative corn injury as the result of PRE applications containing ALS- and/or HPPD-inhibiting herbicides to a sandy loam soil. Herbicide premixes containing clopyralid, flumetsulam, isoxaflutole, mesotrione, rimsulfuron, tembotrione, thifensulfuron, and thiencarbazone were applied at twice the labeled rate. In general, isoxaflutole alone was the safest herbicide evaluated, while PRE applications of rimsulfuron-containing herbicides caused the most corn stunting, had a lower recovery rate, and lower yields. However, POST applications of mesotrione plus rimsulfuron stunted corn less than 2%. Although there was little correlation between corn injury and yield, growers should be aware of the other factors, such as soil texture and environment that may impact crop production.
Grape hyacinth is a perennial bulbous species in the Liliaceae. It is commonly grown as an ornamental plant, but it can spread into agricultural fields and become weedy, potentially interfering with harvest and fall-planted crops. There has been limited research on controlling grape hyacinth in cropping systems. Fall and spring applied field-research studies were conducted to determine grape hyacinth control with herbicides labeled for use in wheat or winter fallow before planting soybean. Among fall-applied herbicides, paraquat resulted in the greatest initial grape hyacinth control (90% to 100%). Grape hyacinth control, 16 months after application (MAA), was variable, but the top-performing treatments were glyphosate and metsulfuron plus paraquat, resulting in 65% and 50% control, respectively. After spring applications, grape hyacinth control in November (7 MAA) was variable, but top-performing treatments were glyphosate and metsulfuron, which resulted in at least 26% control. Spring-applied paraquat, carfentrazone, metsulfuron, and sulfosulfuron resulted in 73%, 68%, 69%, and 60% reductions in grape hyacinth bulb counts, compared with the nontreated control 7 MAA, and were the top-performing treatments. Despite product-label prohibitions on rotation to soybeans, no soybean yield reductions were observed from any treatment in either study. Single applications of certain herbicides in the fall or spring can result in good control (>80%) of grape hyacinth initially, but long-term control is poor, and additional research is required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.