Specialized computational chemistry packages have permanently reshaped the landscape of chemical and materials science by providing tools to support and guide experimental efforts and for the prediction of atomistic and electronic properties. In this regard, electronic structure packages have played a special role by using first-principle-driven methodologies to model complex chemical and materials processes. Over the past few decades, the rapid development of computing technologies and the tremendous increase in computational power have offered a unique chance to study complex transformations using sophisticated and predictive many-body techniques that describe correlated behavior of electrons in molecular and condensed phase systems at different levels of theory. In enabling these simulations, novel parallel algorithms have been able to take advantage of computational resources to address the polynomial scaling of electronic structure methods. In this paper, we briefly review the NWChem computational chemistry suite, including its history, design principles, parallel tools, current capabilities, outreach, and outlook.
High-throughput, comprehensive, and confident identifications of metabolites and other chemicals in biological and environmental samples will revolutionize our understanding of the role these chemically diverse molecules play in biological systems. Despite recent technological advances, metabolomics studies still result in the detection of a disproportionate number of features that cannot be confidently assigned to a chemical structure. This inadequacy is driven by the single most significant limitation in metabolomics, the reliance on reference libraries constructed by analysis of authentic reference materials with limited commercial availability. To this end, we have developed the in silico chemical library engine (ISiCLE), a high-performance computing-friendly cheminformatics workflow for generating libraries of chemical properties. In the instantiation described here, we predict probable three-dimensional molecular conformers (i.e., conformational isomers) using chemical identifiers as input, from which collision cross sections (CCS) are derived. The approach employs first-principles simulation, distinguished by the use of molecular *
Using the BLYP and B3LYP level of density functional theory, four possible decomposition reaction pathways of HMX in the gas phase were investigated: N-NO 2 bond dissociation, HONO elimination, C-N bond scission of the ring, and the concerted ring fission. The energetics of each of these four mechanisms are reported. Dissociation of the N-NO 2 bond is putatively the initial mechanism of nitramine decomposition in the gas phase. Our results find the dissociation energy of this mechanism to be 41.8 kcal/mol at the BLYP level and 40.5 kcal/mol at the B3LYP level, which is comparable to experimental results. Three other mechanisms are calculated and found at the BLYP level to be energetically competitive to the nitrogennitrogen bond dissociation; however, at the B3LYP level these three other mechanisms are energetically less favorable. It is proposed that the HONO elimination and C-N bond scission reaction of the ring would be favorable in the condensed phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.