Like many coastal zones and estuaries, the Chesapeake Bay has been severely degraded by cultural eutrophication. Rising implementation costs and difficulty achieving nutrient reduction goals associated with point and nonpoint sources suggests that approaches supplemental to source reductions may prove useful in the future. Enhanced oyster aquaculture has been suggested as one potential policy initiative to help rid the Bay waters of excess nutrients via harvest of bioassimilated nutrients. To assess this potential, total nitrogen (TN), total phosphorous (TP), and total carbon (TC) content were measured in oyster tissue and shell at two floating-raft cultivation sites in the Chesapeake Bay. Models were developed based on the common market measurement of total length (TL) for aquacultured oysters, which was strongly correlated to the TN (R2 = 0.76), TP (R2 = 0.78), and TC (R2 = 0.76) content per oyster tissue and shell. These models provide resource managers with a tool to quantify net nutrient removal. Based on model estimates, 10(6) harvest-sized oysters (76 mm TL) remove 132 kg TN, 19 kg TP, and 3823 kg TC. In terms of nutrients removed per unit area, oyster harvest is an effective means of nutrient removal compared with other nonpoint source reduction strategies. At a density of 286 oysters m(-2), assuming no mortality, harvest size nutrient removal rates can be as high as 378 kg TN ha(-1), 54 kg TP ha(-1), and 10,934 kg TC ha(-1) for 76-mm oysters. Removing 1 t N from the Bay would require harvesting 7.7 million 76-mm TL cultivated oysters.
Globally, diadromous species are at risk from fragmentation by damming of rivers, and a host of other anthropogenic factors. On the United States Atlantic Coast, where diadromous fish populations have undergone dramatic declines, restoration programs based on fishway construction and hatcheries have sustained remnant populations, but large-scale restoration has not been achieved. We examine anadromous fish restoration programs on three large Atlantic Coast rivers, the Susquehanna, Connecticut, and Merrimack with multiple mainstem hydropower dams, most with relatively low generating capacity. Mean passage efficiencies through fishways on these rivers from the first dam to the spawning grounds for American shad are less than 3%. The result is that only small fractions of targeted fish species are able to complete migrations. It may be time to admit failure of fish passage and hatchery-based restoration programs and acknowledge that significant diadromous species restoration is not possible without dam removals. The approach being employed on the Penobscot River, where dams are being removed or provided the opportunity to increase power generation within a plan to provide increased access to habitat, offers a good model for restoration. Dammed Atlantic Coastal rivers offer a cautionary tale for developing nations intent on hydropower development, suggesting that lasting ecosystem-wide impacts cannot be compensated for through fish passage and hatchery technology.
Many advocates of water quality trading in the United States frequently assume that agricultural nonpoint sources will be the primary trading partner for regulated point sources. Virginia requires regulated point sources to offset new nutrient discharges. Nutrient offsets generated by agricultural nonpoint source reductions are compared against urban nonpoint source and nutrient assimilation offsets. Evidence suggests that agricultural nonpoint source offsets may not be a technically feasible or particularly cost effective compliance option for regulated point sources.
Market‐like trading programs for water quality management begin with enforceable limits on the amount of the pollutant allowed in a watershed. Properly designed market‐like trading programs then create incentives for dischargers to reduce nutrient control costs over time by making pollution prevention innovations. However, the structure of the Clean Water Act can be a barrier to establishing market‐like trading programs. First, we describe the general features and advantages of market‐like trading programs. Then we offer practical suggestions for bringing market‐like design concepts to nutrient trading programs within the existing legal and regulatory setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.