Detecting community-wide statistical relationships from targeted amplicon-based and metagenomic profiling of microbes in their natural environment is an important step toward understanding the organization and function of these communities. We present a robust and computationally tractable latent graphical model inference scheme that allows simultaneous identification of parsimonious statistical relationships among microbial species and unobserved factors that influence the prevalence and variability of the abundance measurements. Our method comes with theoretical performance guarantees and is available within the SParse InversE Covariance estimation for Ecological ASsociation Inference (SPIEC-EASI) framework ('SpiecEasi' R-package). Using simulations, as well as a comprehensive collection of amplicon-based gut microbiome datasets, we illustrate the method's ability to jointly identify compositional biases, latent factors that correlate with observed technical covariates, and robust statistical microbial associations that replicate across different gut microbial data sets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.