We conclude that the reduction in EtOH drinking is not due to general malaise, altered perception of taste, or reduced calorie-seeking. Furthermore, we provide the first evidence for bidirectional control of NAc core and binge-like drinking. These findings could have promising implications for treatment.
Circadian rhythm disruptions are prominently associated with bipolar disorder (BD). Circadian rhythms are regulated by the molecular clock, a family of proteins that function together in a transcriptional–translational feedback loop. The CLOCK protein is a key transcription factor of this feedback loop, and previous studies have found that manipulations of the Clock gene are sufficient to produce manic-like behavior in mice (1). The CLOCK 3111T/C single-nucleotide polymorphism (SNP; rs1801260) is a genetic variation of the human CLOCK gene that is significantly associated with increased frequency of manic episodes in BD patients (2). The 3111T/C SNP is located in the 3′-untranslated region of the CLOCK gene. In this study, we sought to examine the functional implications of the human CLOCK 3111T/C SNP by transfecting a mammalian cell line (mouse embryonic fibroblasts isolated from Clock−/− knockout mice) with pcDNA plasmids containing the human CLOCK gene with either the T or C SNP at position 3111. We then measured circadian gene expression over a 24-h time period. We found that the CLOCK3111C SNP resulted in higher mRNA levels than the CLOCK 3111T SNP. Furthermore, we found that Per2, a transcriptional target of CLOCK, was also more highly expressed with CLOCK 3111C expression, indicating that the 3′-UTR SNP affects the expression, function, and stability of CLOCK mRNA.
Abnormal circadian rhythms and circadian genes are strongly associated with several psychiatric disorders. Neuronal PAS Domain Protein 2 (NPAS2) is a core component of the molecular clock that acts as a transcription factor and is highly expressed in reward- and stress-related brain regions such as the striatum. However, the mechanism by which NPAS2 is involved in mood-related behaviors is still unclear. We measured anxiety-like behaviors in mice with a global null mutation in Npas2 (Npas2 null mutant mice) and found that Npas2 null mutant mice exhibit less anxiety-like behavior than their wild-type (WT) littermates (in elevated plus maze, light/dark box and open field assay). We assessed the effects of acute or chronic stress on striatal Npas2 expression, and found that both stressors increased levels of Npas2. Moreover, knockdown of Npas2 in the ventral striatum resulted in a similar reduction of anxiety-like behaviors as seen in the Npas2 null mutant mouse. Additionally, we identified Gabra genes as transcriptional targets of NPAS2, found that Npas2 null mutant mice exhibit reduced sensitivity to the GABAa positive allosteric modulator, diazepam and that knockdown of Npas2 reduced Gabra1 expression and response to diazepam in the ventral striatum. These results: (1) implicate Npas2 in the response to stress and the development of anxiety; and (2) provide functional evidence for the regulation of GABAergic neurotransmission by NPAS2 in the ventral striatum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.