Beta-site amyloid-β precursor protein-cleaving enzyme 1 (BACE1) is a transmembrane aspartic protease and has shown potential as a possible therapeutic target for Alzheimer's disease. This aggravating disease involves the aberrant production of β amyloid plaques by BACE1 which catalyzes the ratelimiting step by cleaving the amyloid precursor protein (APP), generating the neurotoxic amyloid β protein that aggregates to form plaques leading to neurodegeneration. Therefore, it is indispensable to inhibit BACE1, thus modulating the APP processing. In this study, we present a workflow that utilizes a multi-stage virtual screening protocol for identifying potential BACE1 inhibitors by employing multiple artificial neural network-based models. Collectively, all the hyperparameter tuned models were assigned a task to virtually screen Maybridge library, thus yielding a consensus of 41 hits. The majority of these hits exhibited optimal pharmacokinetic properties confirmed by high central nervous system multiparameter optimization (CNS-MPO) scores. Further shortlisting of 8 compounds by molecular docking into the active site of BACE1 and their subsequent in-vitro evaluation identified 4 compounds as potent BACE1 inhibitors with IC50 values falling in the range 0.028-0.052 μM and can be further optimized with medicinal chemistry efforts to improve their activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.