Smart grid (SG), an evolving concept in the modern power infrastructure, enables the two-way flow of electricity and data between the peers within the electricity system networks (ESN) and its clusters. The self-healing capabilities of SG allow the peers to become active partakers in ESN. In general, the SG is intended to replace the fossil fuel-rich conventional grid with the distributed energy resources (DER) and pools numerous existing and emerging know-hows like information and digital communications technologies together to manage countless operations. With this, the SG will able to “detect, react, and pro-act” to changes in usage and address multiple issues, thereby ensuring timely grid operations. However, the “detect, react, and pro-act” features in DER-based SG can only be accomplished at the fullest level with the use of technologies like Artificial Intelligence (AI), the Internet of Things (IoT), and the Blockchain (BC). The techniques associated with AI include fuzzy logic, knowledge-based systems, and neural networks. They have brought advances in controlling DER-based SG. The IoT and BC have also enabled various services like data sensing, data storage, secured, transparent, and traceable digital transactions among ESN peers and its clusters. These promising technologies have gone through fast technological evolution in the past decade, and their applications have increased rapidly in ESN. Hence, this study discusses the SG and applications of AI, IoT, and BC. First, a comprehensive survey of the DER, power electronics components and their control, electric vehicles (EVs) as load components, and communication and cybersecurity issues are carried out. Second, the role played by AI-based analytics, IoT components along with energy internet architecture, and the BC assistance in improving SG services are thoroughly discussed. This study revealed that AI, IoT, and BC provide automated services to peers by monitoring real-time information about the ESN, thereby enhancing reliability, availability, resilience, stability, security, and sustainability.
Farm machinery like water sprinklers (WS) and pesticide sprayers (PS) are becoming quite popular in the agricultural sector. The WS and PS are two distinct types of machinery, mostly powered using conventional energy sources. In recent times, the battery and solar-powered WS and PS have also emerged. With the current WS and PS, the main drawback is the lack of intelligence on water and pesticide use decisions and autonomous control. This paper proposes a novel multi-purpose smart farming robot (MpSFR) that handles both water sprinkling and pesticide spraying. The MpSFR is a photovoltaic (PV) powered battery-operated internet of things (IoT) and computer vision (CV) based robot that helps in automating the watering and spraying process. Firstly, the PV-powered battery-operated autonomous MpSFR equipped with a storage tank for water and pesticide drove with a programmed pumping device is engineered. The sprinkling and spraying mechanisms are made fully automatic with a programmed pattern that utilizes IoT sensors and CV to continuously monitor the soil moisture and the plant’s health based on pests. Two servo motors accomplish the horizontal and vertical orientation of the spraying nozzle. We provided an option to remotely switch the sprayer to spray either water or pesticide using an infrared device, i.e., within a 5-m range. Secondly, the operation of the developed MpSFR is experimentally verified in the test farm. The field test’s observed results include the solar power profile, battery charging, and discharging conditions. The results show that the MpSFR operates effectively, and decisions on water use and pesticide are automated.
Due to the rapid growth in power consumption of domestic and industrial appliances, distributed energy generation units face difficulties in supplying power efficiently. The integration of distributed energy resources (DERs) and energy storage systems (ESSs) provides a solution to these problems using appropriate management schemes to achieve optimal operation. Furthermore, to lessen the uncertainties of distributed energy management systems, a decentralized energy management system named virtual power plant (VPP) plays a significant role. This paper presents a comprehensive review of 65 existing different VPP optimization models, techniques, and algorithms based on their system configuration, parameters, and control schemes. Moreover, the paper categorizes the discussed optimization techniques into seven different types, namely conventional technique, offering model, intelligent technique, price-based unit commitment (PBUC) model, optimal bidding, stochastic technique, and linear programming, to underline the commercial and technical efficacy of VPP at day-ahead scheduling at the electricity market. The uncertainties of market prices, load demand, and power distribution in the VPP system are mentioned and analyzed to maximize the system profits with minimum cost. The outcome of the systematic categorization is believed to be a base for future endeavors in the field of VPP development.
The corrosion of steel reinforcement in concrete often leads to huge unbudgeted expenses for maintaining, monitoring and renovating an infrastructure. This is mainly due to the presence of salts or chemical chlorides that pose a danger to the concrete structures. The determination of the existence of these corrosive salts is vital for defining the service life of concrete. This research looked at developing an electromagnetic induction (EMI) sensor for the detection of corrosive salts. The first design adopted a single-loop coil (SLC) concept, and the second was based on a multiple-loop coil (MLC) one using copper wire. Tests were conducted on these two techniques, and with the results obtained, the latter seemed more promising; thus, a prototype sensor was developed using the MLC concept. As this new prototype sensor was able to detect the manifestation of chemical contents in a concrete structure, it could be used as a non-destructive evaluation (NDE) technique for the detection of corrosive chemicals in concrete and has the further possibility of detecting corrosion in concrete.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.