The Internet has fostered an unconventional and powerful style of collaboration: "wiki" web sites, where every visitor has the power to become an editor. In this paper we investigate the dynamics of Wikipedia, a prominent, thriving wiki. We make three contributions. First, we introduce a new exploratory data analysis tool, the history flow visualization, which is effective in revealing patterns within the wiki context and which we believe will be useful in other collaborative situations as well. Second, we discuss several collaboration patterns highlighted by this visualization tool and corroborate them with statistical analysis. Third, we discuss the implications of these patterns for the design and governance of online collaborative social spaces. We focus on the relevance of authorship, the value of community surveillance in ameliorating antisocial behavior, and how authors with competing perspectives negotiate their differences.
Scalability and accuracy are well recognized challenges in deep extreme multi-label learning where the objective is to train architectures for automatically annotating a data point with the most relevant subset of labels from an extremely large label set. This paper develops the DeepXML framework that addresses these challenges by decomposing the deep extreme multi-label task into four simpler sub-tasks each of which can be trained accurately and efficiently. Choosing different components for the four sub-tasks allows Deep-XML to generate a family of algorithms with varying trade-offs between accuracy and scalability. In particular, DeepXML yields the Astec algorithm that could be 2-12% more accurate and 5-30× faster to train than leading deep extreme classifiers on publically available short text datasets. Astec could also efficiently train on Bing short text datasets containing up to 62 million labels while making predictions for billions of users and data points per day on commodity hardware. This allowed Astec to be deployed on the Bing search engine for a number of short text applications ranging from matching user queries to advertiser bid phrases to showing personalized ads where it yielded significant gains in click-through-rates, coverage, revenue and other online metrics over state-of-the-art techniques currently in production. DeepXML's code is available at https://github.com/Extreme-classification/deepxml.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.