Using full-atom molecular simulation, we report the first systematic investigation of common phthalate plasticizers for PVC. A multistep model generation and equilibration protocol are proposed for amorphous polymer−plasticizer mixtures, from which statistically robust prediction of materials properties is achieved. Plasticizer performance is evaluated with our molecular models, which considers both their plasticization efficacy and thermodynamic compatibility with the host polymer. Effects of the alkyl side chain configuration in these phthalates are systematically discussed. The results agree well with all known experimental observations. In addition to the size of the alkyl chains, their branching configuration is another factor affecting the phthalate compatibility with PVC. Relaxation of the alkyl side chains is found to be the limiting step in the diffusion of phthalates in PVC, making it a key design parameter for better migration resistance. With the addition of plasticizers, the dynamics of PVC backbones remain the same in the short-time relaxation process, but an earlier onset of the cooperative motion between molecules allows it to enter the long-time diffusive regime earlier. The main outcomes of this study include (1) a molecular modeling protocol validated with commonly used phthalates, which can be used to predict the performance of alternative plasticizers, and (2) molecular insight that can better inform the molecular design of new plasticizers. As a side outcome, we also report a nontrivial chain-length dependence of the cohesive energy and solubility parameter of long-chain polymers, which is an important consideration in the calculation of these quantities using molecular simulation.
Gas checks are visible fleck‐shaped defects that occur on the surface of poly(vinyl chloride) (PVC) films during industrial calendering. Films containing these surface defects often do not meet minimum product specifications and therefore must be disposed of or recycled, resulting in increased cost and material waste. Currently, gas checks are controlled by keeping film gauge low and through trial‐and‐error modifications of processing parameters by calender operators. In this work, our group developed a series of chemical additives that can be blended with PVC to prevent the formation of gas check defects. We found that a series of poly(caprolactone) (PCL)‐based compounds with diester linkers and alkyl chain cappers were all effective at preventing the formation of gas checks during calendering, with additive concentrations as low as 8 phr producing films with no gas checks. We found that the blends produced with our additives had higher melt viscosities than those produced with additives that do not remove gas checks, suggesting that viscosity plays an important role in preventing gas check defects.
A family of poly(caprolactone) (PCL)-based oligomeric additives was evaluated as plasticizers for poly(vinyl chloride) (PVC). We found that the entire family of additives, which consist of a PCL core, diester linker, and alkyl chain cap, were effective plasticizers that improve migration resistance. The elongation at break and tensile strength of the blends made with the PCL-based additives were comparable to blends prepared with diisononyl phthalate (DINP), a plasticizer typically used industrially, and diheptyl succinate (DHPS), an alternative biodegradable plasticizer. Increasing concentration was found to decrease glass transition temperature (T g ) and increase elongation at break, confirming their role as functional plasticizers. We found that all of the PCL-based plasticizers exhibited significantly reduced leaching into hexanes compared to DINP and DHPS. The PCL-based plasticizers with shorter carbon chain lengths reduced leaching more than those with longer carbon chain lengths.
Using all-atom molecular simulation, a wide range of plasticizers for poly(vinyl chlorid) (PVC), including ortho-and tere-phthalates, trimellitates, citrates, and various aliphatic dicarboxylates, are systematically studied. We focus on the e ects of plasticizer molecular structure on its performance, as measured by performance metrics including its thermodynamic compatibility with PVC, e ectiveness of reducing the material's Young's modulus, and migration rate in the PVC matrix. The wide variety of plasticizer types covered in the study allows us to investigate the e ects of seven molecular design parameters. Experimental ndings about the e ects of plasticizer molecular design are also compiled from various literature sources and reviewed. Comparison with experiments establishes the reliability of our simulation predictions. The study aims to provide a comprehensive set of guidelines for the selection and design of high-performance plasticizers at the molecular level. Molecular mechanisms for how each design parameter in uences plasticizer performance metrics are also discussed. Moreover, we report a nontrivial dependence of plasticizer migration rate on temperature, which reconciles seemingly con icting experimental reports on the migration tendency of di erent plasticizers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.