Tiara[5]arenes (T[5]s), a new class of five‐fold symmetric oligophenolic macrocycles that are not accessible from the addition of formaldehyde to phenol, were synthesized for the first time. These pillar[5]arene‐derived structures display both unique conformational freedom, differing from that of pillararenes, with a rich blend of solid‐state conformations and excellent host–guest interactions in solution. Finally we show how this novel macrocyclic scaffold can be functionalized in a variety of ways and used as functional crystalline materials to distinguish uniquely between benzene and cyclohexane.
The development of
an efficient synthetic route toward rim-differentiated C5-symmetric pillar[5]arenes (P[5]s), whose two
rims are decorated with different chemical functionalities, opens
up successive transformations of this macrocyclic scaffold. This paper
describes a gram-scale synthesis of a C5-symmetric penta-hydroxy P[5] precursor, and a range of highly efficient
reactions that allow functionalizing either rim at will via, e.g.,
sulfur(VI) fluoride exchange (SuFEx) reactions, esterifications, or
Suzuki–Miyaura coupling. Afterward, BBr3 demethylation
activates another rim for similar functionalizations.
The ability to use bio-inspired building-blocks in the assembly of novel supramolecular frameworks is at the forefront of this exciting research field. Herein, we present the first polyproline helix to self-assemble into a reversibly porous, crystalline, supramolecular peptide framework (SPF). This framework is assembled from a short oligoproline, adopting the polyproline II conformation, driven by hydrogen-bonding and dispersion interactions. Thermal activation, guest-induced dynamic porosity and enantioselective guest inclusion have been demonstrated for this novel system. The principles of the self-assembly associated with this SPF will be used as a blueprint allowing for the further development of helical peptide linkers in the rational design of SPFs and metalpeptide frameworks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.