The number of machine learning, artificial intelligence or data science related software engineering projects using Agile methodology is increasing. However, there are very few studies on how such projects work in practice. In this paper, we analyze project issues tracking data taken from Scrum (a popular tool for Agile) for several machine learning projects. We compare this data with corresponding data from non-machine learning projects, in an attempt to analyze how machine learning projects are executed differently from normal software engineering projects. On analysis, we find that machine learning project issues use different kinds of words to describe issues, have higher number of exploratory or research oriented tasks as compared to implementation tasks, and have a higher number of issues in the product backlog after each sprint, denoting that it is more difficult to estimate the duration of machine learning project related tasks in advance. After analyzing this data, we propose a few ways in which Agile machine learning projects can be better logged and executed, given their differences with normal software engineering projects.
We consider a smart home or smart office environment with a number of IoT devices connected and passing data between one another. The footprints of the data transferred can provide valuable information about the devices, which can be used to (a) identify the IoT devices and (b) in case of failure, to identify the correct replacements for these devices. In this paper, we generate the embeddings for IoT devices in a smart home using Word2Vec, and explore the possibility of having a similar concept for IoT devices, aka IoT2Vec. These embeddings can be used in a number of ways, such as to find similar devices in an IoT device store, or as a signature of each type of IoT device. We show results of a feasibility study on the CASAS dataset of IoT device activity logs, using our method to identify the patterns in embeddings of various types of IoT devices in a household.
Keywords-Word2Vec; IoT2Vec; word embeddings; smart homeI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.