Organophosphate pesticides continue to pose a risk to human health in the United States. Biological monitoring should be used to strictly regulate occupational exposures to organophosphates and thus protect the health and safety of workers. Among the public there should be an increased awareness of environmental exposure to organophosphates as well as of the threat of chemical warfare or terrorism.
Acute organophosphate (OP) poisoning is a major health issue in developing countries. Organophosphate insecticides inhibit cholinesterase (ChE) enzymatic activity, thereby eliciting cholinergic signs and symptoms. Victims of OP poisoning require immediate hospital emergency room (ER) treatment to prevent a fatal outcome. We present an epidemiologic review of acute OP poisoning in hospital ER patients. Areas of interest include countries with acute OP poisoning, nature of exposure, gender and age of patients, clinical cholinergic features, ChE activity, and health outcome, including recovery rate, case fatality rate, and post-ER complications. The review comprises case reports, hospital surveys, and clinical studies on acute OP poisoning. More studies were conducted in developed than in developing countries. Suicidal and occupational OP poisoning in agricultural workers was prevalent in developing countries, whereas accidental OP poisoning was prevalent in developed countries. Healthcare workers in the ER were also affected by OP poisoning. Both males and females were affected. Children accounted for 35% of the OP-poisoned victims. Patients presented with a classic cholinergic syndrome and serum ChE depresssion, with a recovery rate above 90%. Neurologic impairment was the most frequent complication. Preventing environmental OP exposure and increasing the awareness of pesticide toxicity would reduce acute OP poisoning and protect human health.
Cancer is a multifactorial disease with contributions from genetic, environmental, and lifestyle factors. Pesticide exposure is recognized as an important environmental risk factor associated with cancer development. The epidemiology of pesticide exposure and cancer in humans has been studied globally in various settings. Insecticides, herbicides, and fungicides are associated with hemopoetic cancers, and cancers of the prostate, pancreas, liver, and other body systems. The involvement of pesticides in breast cancer has not yet been determined. In developing countries, sufficient epidemiologic research and evidence is lacking to link pesticide exposure with cancer development. Agricultural and industrial workers are high-risk groups for developing cancer following pesticide exposure. Children of farm workers can be exposed to pesticides through their parents. Maternal exposure to pesticides can pose a health risk to the fetus and the newborn. The organophosphates are most the commonly used compounds, but the organochlorines are still permitted for limited use in developing countries. Pesticide exposure, independently or in synergism with modifiable risk factors, is associated with several types of cancer.
Toxic effects on eyes result from exposure to pesticides via inhalation, ingestion, dermal contact and ocular exposure. Exposure of unprotected eyes to pesticides results in the absorption in ocular tissue and potential ocular toxicity. Recent literature on the risks of ocular toxicity from pesticide exposure is limited.Ocular toxicity from pesticide exposure, including the dose-response relationship, has been studied in different animal species. Cholinesterase enzymes have been detected in animal ocular tissue, with evidence of organophosphate-induced inhibition. Pathological effects of pesticides have been observed in conjunctiva, cornea, lens, retina and the optic nerve. Pesticide exposure has been associated with retinopathy in agricultural workers and wives of farmers who used pesticides. Saku disease, an optico-autonomic peripheral neuropathy, has been described in Japan in people living in an area where organophosphates were used. Pesticide exposure is also associated with abnormal ocular movements.Progressive toxic ocular effects leading to defective vision are a serious health concern. Agricultural workers are at high risk of exposure to pesticides and associated ocular toxicity. Primary prevention is the appropriate method of protecting eyes from pesticide-related damage. This includes improved eye safety and care in workplaces, and effective pesticide regulation for maintenance of public eye health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.