Cyber Physical Systems (CPS) comprises of the ubiquitous object concept those are connected with Internet to provide ability of data transmission and sensing over network. The smart appliances transmits the data through CPS devices with the implementation of Internet of Things (IoT) exhibits improved performance characteristics with significant advantages such as time savings, reduced cost, higher human comfort and efficient electricity utilization. In the minimal complexity sensor nodes cyber physical system is adopted for the heterogeneous environment for the wireless network connection between clients or hosts. However, the conventional security scheme uses the mechanisms for desktop devices with efficient utilization of resources in the minimal storage space environment, minimal power processing and limited energy backup. This paper proposed a Secure Honeynet key authentication (SHKA) model for security attack prevention through effective data monitoring with IoT 4G communication. The proposed SHKA model uses the lightweight key agreement scheme for authentication to provide security threats and confidentiality issues in CPS applications. With the implementation of SHKA HoneyNet model the data in IoT are monitored for security mechanism in IoT environment. The middleware module in SHKA scheme uses the Raspberry platform to establish internetworking between CPS device to achieve dynamic and scalability. The secure IoT infrastructure comprises of flexible evaluation of user-centric environment evaluation for the effectiveness. The developed SHKA model perform mutual authentication between CPS devices for minimal computation overhead and efficiency. The wireless channel uses the dynamic session key for the secure communication for cyber-attacks security with lightweight security in CPS system. The SHKA model demonstrate the effectiveness based on consideration of three constraints such as low power processing, reduced storage and minimal backup energy. Experimental analysis stated that proposed SHKA scheme provides lightweight end-to-end key establishment in every session. The CPS devices generates the session key of 128 bit long. The minimum key size is implemented to provide effective security in IoT 4G communication with minimal execution time. The simulation results demonstrated that SHKA model exhibits effective cyber-attacks for the constraint devices to improve performance of IoT network.
The wireless body area network is the decentralized and dynamic type of network in which sensor nodes can be added dynamically. The RPL is the routing protocol which is used to establish path from source to destination. The SEAR protocol is the improved version of RPL routing protocol. In this research paper, problem of link failure is resolved with the parameters of buffer size. The proposed mode is implemented in MATLAB and compared with basic SEAR protocol in terms of certain parameters. It is analyzed that proposed model performs well in terms of energy consumption, packet loss and throughput.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.