Wasted food due to spoilage is a critical resource issue. Food waste or food loss is food that is discarded or lost uneaten. Currently, in the world, according to the Food and Agriculture Organization of the United Nations (FAO), consumers waste about 1.3 billion tons of food annually and consumers in rich countries waste about 222 million tons of food products Once food products are purchased and set aside in a refrigerator , the users do not alert about their food items' expiration date and/or freshness unless they individually examine and track them. Moreover, for food An improved algorithm to fire detection in forest by using wireless sensor networks Abdulsahib, G.M. Khalaf, O.I. View all related documents based on references
Crowd management and monitoring is crucial for maintaining public safety and is an important research topic. Developing a robust crowd monitoring system (CMS) is a challenging task as it involves addressing many key issues such as density variation, irregular distribution of objects, occlusions, pose estimation, etc. Crowd gathering at various places like hospitals, parks, stadiums, airports, cultural and religious points are usually monitored by Close Circuit Television (CCTV) cameras. The drawbacks of CCTV cameras are: limited area coverage, installation problems, movability, high power consumption and constant monitoring by the operators. Therefore, many researchers have turned towards computer vision and machine learning that have overcome these issues by minimizing the need of human involvement. This review is aimed to categorize, analyze as well as provide the latest development and performance evolution in crowd monitoring using different machine learning techniques and methods that are published in journals and conferences over the past five years.
Purpose Motion capture system (MoCap) has been used in measuring the human body segments in several applications including film special effects, health care, outer-space and under-water navigation systems, sea-water exploration pursuits, human machine interaction and learning software to help teachers of sign language. The purpose of this paper is to help the researchers to select specific MoCap system for various applications and the development of new algorithms related to upper limb motion. Design/methodology/approach This paper provides an overview of different sensors used in MoCap and techniques used for estimating human upper limb motion. Findings The existing MoCaps suffer from several issues depending on the type of MoCap used. These issues include drifting and placement of Inertial sensors, occlusion and jitters in Kinect, noise in electromyography signals and the requirement of a well-structured, calibrated environment and time-consuming task of placing markers in multiple camera systems. Originality/value This paper outlines the issues and challenges in MoCaps for measuring human upper limb motion and provides an overview on the techniques to overcome these issues and challenges.
Face Detection is an important step in any face recognition systems, for the purpose of localizing and extracting face region from the rest of the images. There are many techniques, which have been proposed from simple edge detection techniques to advance techniques such as utilizing pattern recognition approaches. This paper evaluates two methods of face detection, her features and Local Binary Pattern features based on detection hit rate and detection speed. The algorithms were tested on Microsoft Visual C++ 2010 Express with OpenCV library. The experimental results show that Local Binary Pattern features are most efficient and reliable for the implementation of a real-time face detection system.
Crowd monitoring and analysis has become increasingly used for unmanned aerial vehicle applications. From preventing stampede in high concentration crowds to estimating crowd density and to surveilling crowd movements, crowd monitoring and analysis have long been employed in the past by authorities and regulatory bodies to tackle challenges posed by large crowds. Conventional methods of crowd analysis using static cameras are limited due to their low coverage area and non-flexible perspectives and features. Unmanned aerial vehicles have tremendously increased the quality of images obtained for crowd analysis reasons, relieving the relevant authorities of the venues’ inadequacies and of concerns of inaccessible locations and situation. This paper reviews existing literature sources regarding the use of aerial vehicles for crowd monitoring and analysis purposes. Vehicle specifications, onboard sensors, power management, and an analysis algorithm are critically reviewed and discussed. In addition, ethical and privacy issues surrounding the use of this technology are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.