The combined effects of pulse slippage and the transverse magnetic field are studied on terahertz radiation excitation by nonlinear beating of two cosh-Gaussian (ChG) laser pulses propagating in a corrugated plasma. The beating lasers exert nonlinear ponderomotive force on plasma electrons. The oscillating electrons couple with corrugations present in the plasma and resonantly excite a nonlinear current (at different frequencies) which drive the terahertz wave at proper phase matching conditions. As the group velocity of THz radiation is higher than the group velocity of beating lasers, the THz pulse slips forward the pump lasers, and its saturation takes place. The effects of THz wave frequency, the decentred parameter (of beating lasers), the periodicity of the density structure, and the applied dc magnetic field are studied on THz emission. An efficiency of ∼10−4 is achieved for a laser intensity of ∼2×1015 W/cm2 (at a laser wavelength of ∼10.6 μm for the CO2 laser).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.