Introduction: The increasing incidence of infections caused by extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli in sub-Saharan Africa is of serious concern. Studies from countries with a highly industrialized poultry industry suggest the poultry production-food-consumer chain as a potential transmission route. In Africa, integrated studies at this human–animal interface are still missing.Aim: To determine the molecular epidemiology of ESBL-producing E. coli from the intestinal tract of humans and poultry in rural Ghana.Methods: During a 6-month period, fecal samples from all children admitted to the Agogo Hospital (Ghana) and broilers at eight poultry farms located within the hospital catchment area were collected. After screening on selective ESBL agar, whole genome sequencing (WGS) was performed on all ESBL isolates. The genomes were analyzed using multilocus sequence typing (MLST), ESBL genotyping and genome-based phylogenetic analyses.Results: Of 140 broilers and 54 children, 41 (29%) and 33 (61%) harbored ESBL E. coli, respectively, with prevalences on farms ranging between 0 and 85%. No predominant sequence type (ST) was detected among humans. ST10 was most prevalent among broilers (n = 31, 69%). The ESBL gene blaCTX-M-15 was predominant among broilers (n = 43, 96%) and humans (n = 32, 97%). Whole-genome-based phylogenetic analysis revealed three very closely related broiler/human isolate clusters (10% of ESBL isolates) with chromosomal and plasmid-mediated ESBL genes.Conclusion: The findings demonstrate a high frequency of intestinal ESBL-producing E. coli in rural Ghana. Considering that animal and human samples are independent specimens from the same geographic location, the number of closely related ESBL isolates circulating across these two reservoirs is substantial. Hence, poultry farms or meat products might be an important source for ESBL-producing bacteria in rural Ghana leading to difficult-to-treat infections in humans.
Background Chronic infected wounds are generally difficult to manage and treatment can be particularly challenging in resource-limited settings where diagnostic testing is not readily available. In this study, the epidemiology of microbial pathogens in chronically infected wounds in rural Ghana was assessed to support therapeutic choices for physicians. Methods Culture-based bacterial diagnostics including antimicrobial resistance testing were performed on samples collected from patients with chronic wounds at a hospital in Asante Akim North Municipality, Ghana. Fungal detection was performed by broad-range fungal PCR and sequencing of amplicons. Results In total, 105 patients were enrolled in the study, from which 207 potential bacterial pathogens were isolated. Enterobacteriaceae (n = 84, 41%) constituted the most frequently isolated group of pathogens. On species level, Pseudomonas aeruginosa (n = 50, 24%) and Staphylococcus aureus (n = 28, 14%) were predominant. High resistance rates were documented, comprising 29% methicillin resistance in S. aureus as well as resistance to 3 rd generation cephalosporins and fluoroquinolones in 33% and 58% of Enterobacteriaceae, respectively. One P. aeruginosa strain with carbapenem resistance was identified. The most frequently detected fungi were Candida tropicalis.
Cryptosporidiosis is a major cause of diarrhoeal illness among African children, and is associated with childhood mortality, malnutrition, cognitive development and growth retardation. Cryptosporidium hominis is the dominant pathogen in Africa, and genotyping at the glycoprotein 60 (gp60) gene has revealed a complex distribution of different subtypes across this continent. However, a comprehensive exploration of the metapopulation structure and evolution based on whole-genome data has yet to be performed. Here, we sequenced and analysed the genomes of 26 C. hominis isolates, representing different gp60 subtypes, collected at rural sites in Gabon, Ghana, Madagascar and Tanzania. Phylogenetic and cluster analyses based on single-nucleotide polymorphisms showed that isolates predominantly clustered by their country of origin, irrespective of their gp60 subtype. We found a significant isolation-by-distance signature that shows the importance of local transmission, but we also detected evidence of hybridization between isolates of different geographical regions. We identified 37 outlier genes with exceptionally high nucleotide diversity, and this group is significantly enriched for genes encoding extracellular proteins and signal peptides. Furthermore, these genes are found more often than expected in recombinant regions, and they show a distinct signature of positive or balancing selection. We conclude that: (1) the metapopulation structure of C. hominis can only be accurately captured by whole-genome analyses; (2) local anthroponotic transmission underpins the spread of this pathogen in Africa; (3) hybridization occurs between distinct geographical lineages; and (4) genetic introgression provides novel substrate for positive or balancing selection in genes involved in host–parasite coevolution.
Background: Globally, Staphylococcus aureus is an important bacterial pathogen causing a wide range of community and hospital acquired infections. In Ghana, resistance of S. aureus to locally available antibiotics is increasing but the molecular basis of resistance and the population structure of S. aureus in particular in chronic wounds are poorly described. However, this information is essential to understand the underlying mechanisms of resistance and spread of resistant clones. We therefore subjected 28 S. aureus isolates from chronic infected wounds in a rural area of Ghana to whole genome sequencing. Results: Overall, resistance of S. aureus to locally available antibiotics was high and 29% were Methicillin resistant Staphylococcus aureus (MRSA). The most abundant sequence type was ST88 (29%, 8/28) followed by ST152 (18%, 5/28). All ST88 carried the mecA gene, which was associated with this sequence type only. Chloramphenicol resistance gene fexB was exclusively associated with the methicillin-resistant ST88 strains. Panton-Valentine leukocidin (PVL) carriage was associated with ST121 and ST152. Other detected mechanisms of resistance included dfrG, conferring resistance to trimethoprim. Conclusions: This study provides valuable information for understanding the population structure and resistance mechanisms of S. aureus isolated from chronic wound infections in rural Ghana.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.