Replacement of noble‐metal platinum catalysts with cheaper, operationally stable, and highly efficient electrocatalysts holds huge potential for large‐scale implementation of clean energy devices. Metal–organic frameworks (MOFs) and metal dichalcogenides (MDs) offer rich platforms for design of highly active electrocatalysts owing to their flexibility, ultrahigh surface area, hierarchical pore structures, and high catalytic activity. Herein, an advanced electrocatalyst based on a vertically aligned MoS2 nanosheet encapsulated Mo–N/C framework with interfacial Mo–N coupling centers is reported. The hybrid structure exhibits robust multifunctional electrocatalytic activity and stability toward the hydrogen evolution reaction, oxygen evolution reaction, and oxygen reduction reaction. Interestingly, it further displays high‐performance of Zn–air batteries as a cathode electrocatalyst with a high power density of ≈196.4 mW cm−2 and a voltaic efficiency of ≈63 % at 5 mA cm−2, as well as excellent cycling stability even after 48 h at 25 mA cm−2. Such outstanding electrocatalytic properties stem from the synergistic effect of the distinct chemical composition, the unique three‐phase active sites, and the hierarchical pore framework for fast mass transport. This work is expected to inspire the design of advanced and performance‐oriented MOF/MD hybrid‐based electrocatalysts for wider application in electrochemical energy devices.
Carbon materials are generally preferred as anodes in supercapacitors; however, their low capacitance limits the attained energy density of supercapacitor devices with aqueous electrolytes. Here, we report a low-crystalline iron oxide hydroxide nanoparticle anode with comprehensive electrochemical performance at a wide potential window. The iron oxide hydroxide nanoparticles present capacitances of 1,066 and 716 F g−1 at mass loadings of 1.6 and 9.1 mg cm−2, respectively, a rate capability with 74.6% of capacitance retention at 30 A g−1, and cycling stability retaining 91% of capacitance after 10,000 cycles. The performance is attributed to a dominant capacitive charge-storage mechanism. An aqueous hybrid supercapacitor based on the iron oxide hydroxide anode shows stability during float voltage test for 450 h and an energy density of 104 Wh kg−1 at a power density of 1.27 kW kg−1. A packaged device delivers gravimetric and volumetric energy densities of 33.14 Wh kg−1 and 17.24 Wh l−1, respectively.
Rechargeable aqueous Zn-based batteries, benefiting from their good reliability, low cost, high energy/power densities, and ecofriendliness, show great potential in energy storage systems. However, the poor cycling performance due to the formation of Zn dendrites greatly hinders their practical applications. In this work, a trilayer 3D CC-ZnO@C-Zn anode is obtained by in situ growing ZIFs (zeolitic-imidazolate frameworks) derived ZnO@C coreshell nanorods on carbon cloth followed by Zn deposition, which exhibits excellent antidendrite performance. Using CC-ZnO@C-Zn as the anode and a branch-like Co(CO 3 ) 0.5 (OH) x ·0.11H 2 O@CoMoO 4 (CC-CCH@CMO) as the cathode, a Zn-Co battery is rationally designed, displaying excellent energy/power densities (235 Wh kg −1 , 12.6 kW kg −1 ) and remarkable cycling performance (71.1% after 5000 cycles). Impressively, when using a gel electrolyte, a highly customizable, fiber-shaped flexible all-solid-state Zn-Co battery is assembled for the first time, which presents a high energy density of 4.6 mWh cm −3 , peak power density of 0.42 W cm −3 , and long durability (82% capacity retention after 1600 cycles) as well as excellent flexibility. The unique 3D electrode design in this study provides a novel approach to achieve high-performance Zn-based batteries, showing promising applications in flexible and portable energy-storage systems.
Developing efficient, stable, and low-cost catalysts for oxygen evolution reaction (OER) is highly desired in water splitting and metal−air batteries. Transition metal−organic frameworks (MOFs) have emerged as promising catalysts and have been intensively investigated especially due to their tunable crystalline structure. Unlike traditional strategies of tuning the morphology of well-crystalline MOFs, low-crystalline bimetallic MOFs are constructed via inducing exotic metal ions, and the formation process is revealed by experimental and theoretical methods. The lowcrystalline bimetallic MOFs exhibit rich active sites due to local crystallinity and long-range disorder and deliver a small overpotential of 260 mV at 10 mA cm −2 , a low Tafel slope of 35 mV dec −1 , and a high Faradaic efficiency of 99.5% as oxygen evolution elecctrocatalysts. The work opens up a new avenue for the development of highly efficient earth-abundant catalysts in frontier potential applications.
Electrocatalytic water splitting is one of the sustainable and promising strategies to generate hydrogen fuel but still remains a great challenge because of the sluggish anodic oxygen evolution reaction (OER). A very effective approach to dramatically decrease the input cell voltage of water electrolysis is to replace the anodic OER with hydrazine oxidation reaction (HzOR) due to its lower thermodynamic oxidation potential. Therefore, developing the low-cost and efficient HzOR catalysts, coupled with the cathodic hydrogen evolution reaction (HER) is tremendously important for energysaving electrolytic hydrogen production. Herein, a new-type copper-nickel nitride (Cu 1 Ni 2 -N) with rich Cu 4 N/Ni 3 N interface is rationally constructed on the carbon fiber cloth. The three-dimensional electrode exhibits extraordinary HER performance with an overpotential of 71.4 mV at 10 mA cm -2 in 1.0 M KOH, simultaneously delivering an ultralow potential of 0.5 mV at 10 mA cm -2 for HzOR in 1.0 M KOH/0.5 M hydrazine electrolyte. Moreover, the electrolytic cell utilizing the synthesized Cu 1 Ni 2 -N electrode as both the cathode and anode displays a cell voltage of 0.24 V at 10 mA cm -2 with an excellent stability over 75 h. The present work develops the promising copper-nickel-based nitride as a bifunctional electrocatalyst through hydrazine-assistance for energy-saving electrolytic hydrogen production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.