Local injection of ASCs decreases scar size and provides better color quality and scar pliability. It decreases the activity of mast cells and inhibits the action of TGF-β against fibroblasts and positively stimulates scar remodeling through greater expression of MMP molecules.
The 1,444 nm Nd:YAG laser showed a greater lipolytic effect compared to the 1,064 nm Nd:YAG laser in in vivo minipig and in vitro human fat experiments. To achieve a full understanding of the effects of 1,444 nm Nd:YAG laser lipolysis on the human body, in vivo experimentation will be necessary.
A visible cutaneous scar develops from the excess formation of immature collagen in response to an inflammatory reaction. This study examined the role of epidermal growth factor (EGF) in the formation of cutaneous scars. Twenty Crl:CD-1 (ICR) mice were used and 2 full-thickness skin wounds were made on the dorsum of each mouse. One of the wounds was treated with recombinant human EGF by local application and the other was treated with saline for control until complete healing was achieved. The EGF-treated group's wounds healed faster than the control group's. The width of the scar was smaller by 30% and the area was smaller by 26% in the EGF-treated group. Inflammatory cell numbers were significantly lower in the EGF-treated group. The expression of transforming growth factor (TGF)-β1 in the EGF-treated group was increased. It was observed that the amount of collagen in the EGF-treated group was larger than the control group. In the EGF-treated group, the visible external scars were less noticeable than that in the control group. These results suggest that EGF can reduce cutaneous scars by suppressing inflammatory reactions, decreasing expression of TGF-β1, and mediating the formation of collagen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.