Chronically activated microglia and brain vascular damage are major causes of neuroinflammation. The aim of this study was to determine the anti-inflammatory effects of nitro capsaicin, a newly modified capsaicin with less irritating characteristics, against microglial activation and brain microvascular endothelial cell damage. Using the SIMA9 microglia cell line, we found that nitro capsaicin reduced nitric oxide (NO) production in LPS-activated microglia better than its parent compound, capsaicin. Nitro capsaicin also decreased the expression of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) and enhanced the levels of anti-inflammatory factors, IL-4 and IL-10, both at the mRNA and protein levels. In the TNF-α-induced vascular damage model, nitro capsaicin decreased expression and secretion of the proinflammatory cytokines IL-1β and IL-6. Phosphorylated NF-κB p65, a key transcription factor that stimulates the signaling of inflammatory pathways, was also reduced in the presence of nitro capsaicin, suggesting that the anti-inflammatory effects of nitro capsaicin were created through reducing NF-κB activation. Together, we concluded that nitro capsaicin has the potential to be further developed as an anti-neuroinflammatory agent.
Uncontrolled and excessive microglial activation is known to contribute to inflammation-mediated neurodegeneration. Therefore, reducing neurotoxic microglial activation may serve as a new approach to preventing neurodegeneration. Here, we investigated the anti-inflammatory effects of panduratin A against microglial activation induced by lipopolysaccharides (LPS) in the SIMA9 microglial cell line. We initially examined the anti-inflammatory properties of panduratin A by measuring LPS-induced nitric oxide (NO) production and the levels of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6). Panduratin A significantly reduced NO levels and pro-inflammatory cytokines’ production and secretion. In addition, panduratin A enhanced the production of anti-inflammatory cytokines IL-4 and IL-10. The anti-inflammatory effects of panduratin A are related to the suppression of the NF-κB signaling pathway. Together, these results demonstrate the anti-inflammatory properties of panduratin A against LPS-induced microglial activation, suggesting panduratin A has the potential to be further developed as a new agent for the prevention of neuroinflammation-associated neurodegenerative diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.