Electrochemical CO 2 conversion to chemical products is a promising strategy for sustainable industrial development. However, the success of this approach requires an in-depth understanding of catalysis because it involves highly complex multistep reactions. Herein, we suggest a rational design of a hierarchical Bi dendrite catalyst for an efficient conversion of CO 2 to formate. A high selectivity (∼89% at −0.74 V RHE ) and, more importantly, a stable performance during long-term operation (∼12 h) were achieved with the Bi dendrite. Density functional theory (DFT) is used to investigate three possible reaction pathways in terms of surface intermediate, and the one via *OCOH surface intermediate is calculated to be the most energetically feasible. DFT calculations further elucidate the plane-dependent catalytic activity and conclude that the high-index planes developed on the Bi dendrite are responsible for the sustainable performance of Bi dendrite. We expect that our experimental and theoretical study will provide a fundamental guideline for the CO 2 -to-formate conversion pathway as well as design principles for enhancing the catalytic performance.
Fe III -containing ionic liquids (ILs), prepared from the reaction of anhydrous FeCl 3 and imidazolium chloride ([imidazolium]Cl), were used as effective extractants for the desulfurization of a model oil containing dibenzothiophene (DBT). The amount of DBT extracted increased with an increasing molar ratio of FeCl 3 / [imidazolium]Cl. The ability of the ILs to extract DBT seems to be attributed to the combined effects of Lewis acidity and fluidity of ILs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.