Background: In Korea and China, asiasari radix (AR) is widely used as a traditional anti-inflammatory and analgesic agent. After its skin-regenerating and hair loss-preventing activities were identified, several types of AR extracts were used for aesthetic purposes. Nevertheless, the effect of ARE on various types of skin cancers was not fully studied yet. Methods: In this study, we tested the effect of an ethanolic AR extract (ARE) on G361 human melanoma and HaCaT human keratinocyte cell lines. After ARE exposure, cell growth and the expression patterns of proteins and genes were monitored. Results: The ARE-mediated cell growth inhibition was greater in G361 cells than in HaCaT cells due to differences in its cell growth regulation effects. Interestingly, ARE treatment induced caspase-3-mediated apoptosis in G361 cells, but not in HaCaT cells. Furthermore, ARE reduced the expression of p53 and p21 proteins in G361 cells, whereas it induced their expression in HaCaT cells. ARE induced cell death in G361 cells through the reactive oxygen species (ROS)-dependent regulation of p53 and p21 in G361 cells. Microarray analysis showed that ARE regulates Mouse double minute 2 homolog (MDM2) and CASP8 and FADD-like apoptosis regulator (CFLAR) gene expression in G361 and HaCaT cells differently. Conclusion: The treatment of ARE preferentially induces apoptosis in melanoma cells by the ROS-dependent differential regulation of p53 level. Therefore, ARE can be used as a new medicinal option for melanoma.
Oral squamous cell cancer (OSCC) is the most common type of oral cancer (about 80–90% of cases) and various research is being done to cure the disease. This paper aims to verify whether treatment with no-ozone cold plasma (NCP), which is designed for safe usage of the plasma on oral cavities, in combination with gold nanoparticles conjugated with p-FAK antibody (p-FAK/GNP) can trigger the selective and instant killing of SCC-25 cells both in vitro and in vivo. When SCC25 and HaCaT cells are exposed to p-FAK/GNP+NCP, the instant cell death was observed only in SCC25 cells. Such p-FAK/GNP+NCP-mediated cell death was observed only when NCP was directly treated on SCC25 harboring p-FAK/GNP. During NCP treatment, the removal of charged particles from NCP using grounded electric mesh radically decreased the p-FAK/GNP+NCP-mediated cell death. This p-FAK/GNP+NCP-mediated selective cell death of OSCC was also observed in mice xenograft models using SCC25 cells. The mere treatment of p-FAK/GNP and NCP on the xenograft tumor slowly decreased the size of the tumor, and only about 50% of the tumor remained at the end of the experiment. On the other hand, 1 week of p-FAK/GNP+NCP treatment was enough to reduce half of the tumor size, and most of tumor tissue had vanished at the end. An analysis of isolated tissues showed that in the case of individual treatment with p-FAK/GNP or NCP, the cancer cell population was reduced due to apoptotic cell death. However, in the case of p-FAK/GNP+NCP, apoptotic cell death was unobserved, and most tissues were composed of collagen. Thus, this paper suggests the possibility of p-FAK/GNP+NCP as a new method for treating OSCC.
Objectives: The purpose of this study was to evaluate the antimicrobial effect of herbal medicine and low-temperature plasma on oral diseases involving bacteria, and to utilize it in the prevention and treatment of inflammatory oral diseases. Methods: Streptococcus mutans, which is known as main bacteria involved in dental caries, was treated with Glycyrrhiza uralensis extract and low-temperature plasma. Results: Co-treated Glycyrrhiza uralensis extract and low-temperature plasma showed exceptional antimicrobial effect on S. mutans. Conclusions: This study suggests that co-treatment with herb medicine and low-temperature plasma inhibit bacteria safely and effectively. This method can be used to contribute to the treatment of oral diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.