Reports have recently been published on ultrathin biofluid barriers, which enable the long‐term measurement of biological signals and exhibit conformability on nonlinear surfaces such as skin and organs. However, inorganic‐ and organic‐based barriers have process incompatibility and high water permeability, respectively. Siloxane‐ (inorganic) based fluorinated epoxy (organic) hybrid materials (FEH) are demonstrated for bio‐fluidic barrier and the biocompatibility and barrier performance for flexible electronic systems as solution‐processed oxide thin‐film transistors (TFTs) on 1.2 µm thick polyimide (PI) thin film substrate is confirmed. FEH thin film can be patterned as small as 10 µm through conventional photolithography. The fabricated solution‐processed indium oxide TFTs with FEH barriers exhibit durable performance over 16 h with no dramatic change of transfer characteristics in phosphate‐buffered saline (PBS) environment. Furthermore, to realize FEH barriers for flexible systems, the solution‐processed indium oxide TFTs with FEH barriers on ultrathin PI substrate are demonstrated subjected to compression test and successfully measure the electrical properties with no irreversible degradation during 1000 cycles of mechanical testing in PBS.
We investigated the effect of back channel material which plays as a channel defining layer in vertical TFT for the application to the TFT of ultra-high resolution display. Although the IGZO vertical TFT with polyimide back channel has low mobility, itshows good on/off ratio higher than 10 7 , low gate leakage current, and hard saturation behavior with channel length of 1 um.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.