In this paper, we propose an efficient Kalman filter algorithm for simultaneous estimation of absolute ionospheric delay and receiver differential code bias. It is well known that the two quantities are mixed in global positioning system (GPS) measurements causing a rank-deficiency problem. The proposed method requires only the broadcast navigation message and basic measurements provided by a single dual-frequency GPS receiver. Thus, it would be convenient to monitor local ionospheric activities autonomously in real time with minimum hardware. An observability analysis was performed in detail why the simultaneous estimation is possible in spite of the rank deficiency occurring in epoch-by-epoch measurements. Experimental results based on real GPS measurements demonstrate the feasibility of the proposed method.
Relative navigation based on GPS receivers and inertial measurement units is required in many applications including formation flying, collision avoidance, cooperative positioning, and accident monitoring. Since sensors are mounted on different vehicles which are moving independently, sensor errors are more variable in relative navigation than in single-vehicle navigation due to different vehicle dynamics and signal environments. In order to improve the robustness against sensor error variability in relative navigation, we present an efficient adaptive GPS/INS integration method. In the proposed method, the covariances of GPS and inertial measurements are estimated separately by the innovations of two fundamentally different filters. One is the position-domain carrier-smoothed-code filter and the other is the velocity-aided Kalman filter. By the proposed two-filter adaptive estimation method, the covariance estimation of the two sensors can be isolated effectively since each filter estimates its own measurement noise. Simulation and experimental results demonstrate that the proposed method improves relative navigation accuracy by appropriate noise covariance estimation.
This paper proposes a distributed processing method applicable to GPS receivers in a network to generate a regional ionosphere map accurately and reliably. For accuracy, the proposed method is operated by multiple local Kalman filters and Kriging estimators. Each local Kalman filter is applied to a dual-frequency receiver to estimate the receiver’s differential code bias and vertical ionospheric delays (VIDs) at different ionospheric pierce points. The Kriging estimator selects and combines several VID estimates provided by the local Kalman filters to generate the VID estimate at each ionospheric grid point. For reliability, the proposed method uses receiver fault detectors and satellite fault detectors. Each receiver fault detector compares the VID estimates of the same local area provided by different local Kalman filters. Each satellite fault detector compares the VID estimate of each local area with that projected from the other local areas. Compared with the traditional centralized processing method, the proposed method is advantageous in that it considerably reduces the computational burden of each single Kalman filter and enables flexible fault detection, isolation, and reconfiguration capability. To evaluate the performance of the proposed method, several experiments with field collected measurements were performed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.