Fast neutron applications have gained popularity with the growth of fast neutron production facilities. Covering a larger area and/or wider angle can be one of the advantages of a fast neutron detector. In the present study, a large-area composite stilbene scintillator with the dimensions of 200 mm (D) × 20 mm (H) was fabricated to examine its scintillation properties and to evaluate its applicability to fast neutron detection. The detector response of small-and large-area composite stilbene scintillators for neutrons and gamma rays was measured and compared with that of commercial and small single-crystal stilbene scintillators. To this end, the response of each scintillator was measured for radioisotopes as well as mono-energetic neutrons generated by a Tandem accelerator. The neutron-gamma separation performance of the largearea composite stilbene scintillator was evaluated in terms of figure-of-merit (FoM) using the digital pulse shape discrimination method. The composite stilbene scintillator showed good energy linearity, as determined from its recoil proton spectra, with reasonable n-γ separation capability. The results indicated that the composite stilbene scintillator could be applied to the field of fast neutron detection, especially when a large area and/or a wide angle is to be covered and could be a good alternative to liquid scintillators.
In Projection Stereolithography Apparatus (PSLA), Digital Micromirror Device (DMD) and Liquid Crystal Display (LCD) are used as a beam pattern generator. The DMD shows high resolution, but it is mostly applied in micro stereolithography due to high cost and fabricable area. In LCD, the size of pattern beam is freely controlled due to various panel sizes. The LCD, however, has some limitations such as short life time by the high power light source, non-uniform light intensity of pattern beam and low transmittance of UV-light. To solve these problems in LCD-based PSLA, a Scanbeam-SLA with LCD of 19 inches and visible LED-array is developed. In this system, the light module works like a scanner for uniform illumination. The system configuration, working principle and fabrication examples are addressed in this study.
Projection-based stereolithography is divided into constrained-surface and free-surface type according to controlling liquid layer. The constrained-surface type has a uniform layer thickness due to the use of a projection window, which covers the pattern generator such as liquid crystal display. However, the adhered resin on the projection window causes trouble and requires great separation force when the cured layer is separated from the window. To minimize the separation force, we developed a system to measure the separation force. The influence of material covering the pattern generator and the resin temperature is investigated in the system. Several structures according to the resin temperature and the velocity of z-axis elevation are compared. As a result, the fabrication condition to minimize the separation force reduces the process time.
A simple and fast method of nuclear material accountancy of pressurized water reactor (PWR) UO 2 spent fuel rods for safeguards application was developed utilizing the isotope correlation between the amounts of 137 Cs and total Pu. To this end, the following steps were taken: (1) as much destructive analysis (DA) data as possible for segments taken from a PWR UO 2 spent fuel rod were aggregated from publicly available data sources; (2) the DA data were corrected so as to have the same cooling time (i.e., CT = 0 y) and analyzed for outliers; (3) an equation converting the 137 Cs amount to the Pu amount was obtained by regression analysis with logarithmic curve fitting; and (4) the error in determining the Pu amount was evaluated for the imposition of a limit on the range of burnup (BU) or initial enrichment (IE). It was found that the averaged % error in calibration was determined to be 3.88% ± 2.68% (= mean ± 1 standard deviation) for the BU range over 30 GWd/tU and falling with increasing BU range. On the other hand, there was no benefit in applying the limit of the IE range. Lastly, the Pu-mass difference between various methods was compared and it was found that the difference can be incurred up to 11.4%, according to the choice of method. In conclusion, the proposed isotope correlation technique could be used for input material accountancy with reasonable uncertainty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.