Endocannabinoid signaling plays various roles in directing reproductive processes. Mouse embryos are shown to express high levels of CB1 receptor (CB1R). Low concentrations of anandamide stimulate embryo growth and implantation but at higher concentrations it adversely affects implantation. We tested the hypothesis that high levels of endocannabinoids cause autophagic activation and cell death in preimplantation mouse embryos. We used methanandamide (METH), a selective CB1R agonist, to examine the effect of heightened endocannabinoid signaling on autophagy in mouse embryos. Western blotting, immunofluorescence staining, transmission electron microscopy and TUNEL analysis were performed. We observed that METH treatment in vitro or in vivo up-regulated autophagic response in preimplantation mouse embryos. In blastocysts, apoptosis was also increased after METH injections. At 28 nM, which is considered a high physiological dose to embryonic cells, METH up-regulated autophagic activation in trophoblast stem cells. This work demonstrates for the first time that blastocysts respond to higher than normal levels of endocannabinoid by increasing autophagic activation and apoptosis.
Purpose Hyaluronic acid (HA) is the most common injectable dermal filler used for soft-tissue augmentation, and can be removed non-surgically by directly injecting hyaluronidase. In this study, the hyaluronidase-mediated degradation of different types of HA fillers implanted subcutaneously at the back of hairless mice having filler residence time of four days or three months were compared. Methods Two sites at the back of female hairless mice were subcutaneously implanted with 0.1-mL of one of the seven HA fillers (NLL, NL, NDL, NVL, and ND, JUV X+ , and RES LYFT ) and injected with 30 IU or 60 IU hyaluronidase per 0.1-mL filler after reaching a filler residence time of 4 or 91 days, respectively. Filler bolus projection was measured using three-dimensional optical imaging over a 72 h period, and the implantation sites were histologically examined 2 weeks after hyaluronidase injection. Results Following hyaluronidase injection, all seven HA fillers showed a rapid decrease of filler volume within 24 h, and complete degradation was confirmed by histological examination after 2 weeks. There was no significant difference in filler volume reduction rate among the seven HA fillers, and no evidence of macroscopic or microscopic adverse effects were observed at the implantation sites. Conclusion All seven HA fillers show comparable susceptibility to hyaluronidase-mediated degradation. HA fillers with prolonged filler residence time may require a higher dose of hyaluronidase to achieve efficient degradation owing to tissue integration.
The chitinase gene of baculoviruses is expressed in the late phase of virus replication in insects and possesses high exo- and endochitinase activity, which can hydrolyze chitin in the body of the insect, thus promoting terminal host liquefaction. Alphabaculovirus viral chitinases (vChitA) have been well analyzed, but information regarding viral chitinases from betabaculoviruses is limited. Whole-genome sequencing of a Korean isolate of Pieris rapae GV (PiraGV-K) predicted a putative chitinase gene corresponding to ORF10. The PiraGV-K chitinase gene had a coding sequence of 1,761 bp, encoding a protein of 586 amino acid (aa) residues, including an 18-aa putative signal peptide. Time course induction pattern observed by SDS-PAGE and subsequent Western blot with anti-PiraGV-K chitinase antibody revealed the cleavage of the signal peptide from the intact chitinase. Edman sequencing analysis was further conducted to confirm the exact nature of the mature chitinase, and the N-terminal amino acid sequence (KPGAP) exactly matched the sequence following the signal peptide sequence. The transcriptomics of PiraGV-K chitinase in infected P. rapae larvae, examined by real-time PCR, revealed a significant 75-fold increase after four days of feeding with PiraGV-K-treated leaves, with a subsequent decline at the later stages of infection. Confocal microscopic analysis showed that PiraGV-K chitinase possibly exists as a secreted protein, with strong chitinase-specific signals in fat body cells and integument at four days postinfection. Furthermore, immunogold labeling and electron microscopy studies localized the PiraGV-K chitinase in the cytoplasm and sparsely within vacuolar structures in the fat body apart from the extensive aggregation in the cuticular lining of the integument.
Polydeoxyribonucleotide (PDRN) is an agonist of the A2A adenosine receptors. We evaluated the effects of PDRN on liver regeneration induced by partial hepatectomy (PH) in rats, focusing on cell proliferation. Proliferating cell nuclear antigen (PCNA) as an indicator of cell proliferation was targeted to determine whether PDRN treatment could promote proliferation of hepatic cells in regenerating liver. Male Sprague-Dawley rats were divided into three groups: normal group (n = 3) without PH (sham operated), control groups (n = 12) with saline injection after PH, and experimental groups (n = 12) with i.p. injection of 8 mg/kg of PDRN immediately after PH. Light microscopically, liver regeneration induced by PH involved proliferation of various hepatic cells including parenchymal cells and Kupffer cells. The disintegration (1 or 2 days after PH) and remodeling (4 days after PH) of hepatic plate and increase of sinusoids (6 days after PH) were sequentially observed. These regenerative processes occurred relatively earlier in the experimental groups. By western blotting, the expression of PCNA increased in the early stage, reached its peak at 1 and 2 days after PH, and decreased thereafter. By immunohistochemistry, the intensities of PCNA staining in the experimental groups were more obvious at various days after PH. By electron microscopy using immunogold labeling for PCNA, the gold particles were largely observed in heterochromatin and nucleolus in hepatic cells. The results of immunochemistry and western blotting for PCNA showed the similar pattern in most groups. These findings suggest that PDRN treatment to hepatectomized rat could accelerate liver regeneration through rapid cell proliferation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.