BackgroundCervical cancer is the second leading cause of death among female patients with cancer in the world. High risk human papillomavirus has causal roles in cervical cancer initiation and progression by deregulating several cellular processes. However, HPV infection is not sufficient for cervical carcinoma development. Therefore, other genetic and epigenetic factors may be involved in this complex disease, and the identification of which may lead to better diagnosis and treatment. Our aim was to analyze the expression of microRNAs in cervical cancer cases positive or negative for HPV E6/E7 mRNA, and to assess their diagnostic usefulness and relevance.MethodsThe expression of three different microRNAs (miR-9, miR-21, and miR-155) in 52 formalin-fixed paraffin-embedded (FFPE) primary cervical cancer tissue samples and 50 FFPE normal cervical tissue samples were evaluated.ResultsMiR-9, miR-21, and miR-155 were significantly overexpressed in cervical cancer tissues compared to normal tissues (P < 0.001). MiR-21 and miR-155 expression combined with the HPV E6/E7 mRNA assay in HPV E6/E7 negative cervical cancer showed increased AUC of 0.7267 and 0.7000, respectively (P = 0.01, P = 0.04), demonstrating their potential as diagnostic tools. Moreover, miR-21 and miR-155 were predictors showing a 7 fold and 10.3 fold higher risk for HPV E6/E7 negative patients with cervical cancer (P = 0.024 and P = 0.017, respectively) while miR-155 was a predictor showing a 27.9 fold higher risk for HPV E6/E7 positive patients with cervical cancer (P < 0.0001).ConclusionsThere is a strong demand for additional, alternative molecular biomarkers for diagnosis and management of precancer patients. MiR-21 and miR-155 may be helpful in the prediction of both HPV positive and HPV negative cases of cervical cancer.
We report that daurinol, a novel arylnaphthalene lignan, is a promising potential anticancer agent with adverse effects that are less severe than those of etoposide, a clinical anticancer agent. Despite its potent antitumor activity, clinical use of etoposide is limited because of its adverse effects, including myelosuppression and the development of secondary leukemia. Here, we comprehensively compared the mechanistic differences between daurinol and etoposide because they have similar chemical structures. Etoposide, a topoisomerase II poison, is known to attenuate cancer cell proliferation through the inhibition of DNA synthesis. Etoposide treatment induces G(2)/M arrest, severe DNA damage, and the formation of giant nuclei in HCT116 cells. We hypothesized that the induction of DNA damage and nuclear enlargement due to abnormal chromosomal conditions could give rise to genomic instability in both tumor cells and in actively dividing normal cells, resulting in the toxic adverse effects of etoposide. We found that daurinol is a catalytic inhibitor of human topoisomerase IIa, and it induces S-phase arrest through the enhanced expression of cyclins E and A and by activation of the ATM/Chk/Cdc25A pathway in HCT116 cells. However, daurinol treatment did not cause DNA damage or nuclear enlargement in vitro. Finally, we confirmed the in vivo antitumor effects and adverse effects of daurinol and etoposide in nude mice xenograft models. Daurinol displayed potent antitumor effects without any significant loss of body weight or changes in hematological parameters, whereas etoposide treatment led to decreased body weight and white blood cell, red blood cell, and hemoglobin concentration.
Introduction The anaphase-promoting complex (APC) is a multiprotein complex with E3 ubiquitin ligase activity, which is required for the ubiquitination of securin and cyclin-B. Moreover, the mitotic spindle checkpoint is activated if APC activation is prevented. In addition, several APC-targeting molecules such as securin, polo-like kinase, aurora kinase, and SnoN have been reported to be oncogenes. Therefore, dysregulation of APC may be associated with tumorigenesis. However, the clinical significance and the involvement of APC in tumorigenesis have not been investigated.
Background One-third of cervical cancer patients are still diagnosed at advanced stages. The five-year survival rate is decreased in about 50% of advanced stage cervical cancer patients worldwide, and the clinical outcomes are remarkably varied and difficult to predict. One of the miRNAs known to be associated with cancer tumorigenesis is miR-944. However, the prognostic value of miR-944 in cervical cancer has not been fully investigated. The aim of this study was to analyze clinical significance and prognostic value of miR-944 in cervical cancer. Methods The expression levels of miR-944 were detected using quantitative reverse transcription polymerase chain reaction in five types of cervical cancer cell lines and 116 formalin-fixed paraffin-embedded (FFPE) cervical tissues. The association between the expression levels of miR-944 and prognostic value was analyzed using the Kaplan-Meier analysis and Cox proportional hazards model. Results The expression levels of miR-944 in cervical cancer tissues were significantly higher compared with those in normal tissues ( P < 0.0001). Moreover, the expression levels of miR-944 in cervical cancer cell lines and FFPE tissues with human papillomavirus (HPV) infection were significantly higher compared to those without HPV infection ( P < 0.01 and P = 0.02). High miR-944 expression was also markedly associated with bulky tumor size ( P = 0.026), advanced International Federation of Gynecology and Obstetrics (FIGO) stage ( P = 0.042), and lymph node metastasis ( P = 0.030). In particular, high miR-944 expression group showed shorter overall survival than the low miR-944 expression group in the advanced FIGO stage (84.4% vs. 44.4%, HR = 4.0, and P = 0.01). Conclusions These results suggest that miR-944 may be used as a novel biomarker for improving prognosis and as a potential therapeutic target. Electronic supplementary material The online version of this article (10.1186/s12885-019-5620-6) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.