Polyvinylidene fluoride (PVDF) ultrafiltration (UF) membrane combined with polyvinylidene fluoride-graft-2-hydroxyethyl acrylate (PVDF-g-PHEA) was fabricated via non-solvent induced phase separation (NIPS). In this study, PVDF-g-PHEA was synthesized via atom transfer radical polymerization (ATRP) method, and then synthesized graft copolymer was characterized using Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) and thermogravimetry analysis (TGA). Moreover, PVDF membranes containing graft copolymer (PVDF-g-PHEA) showed lower water contact angle value than pristine PVDF membranes. Macrovoid holes were also observed in cross sectional scanning electron microscope (SEM) image of PVDF membrane containing PVDF-g-PHEA. Accordingly, it was confirmed that these characteristics led PVDF membrane blended with graft copolymer has high final permeate flux and normalized flux compared to pristine PVDF membrane.
Abstract:As one of the carbon capture and utilization (CCU) technologies, mineral carbonation which has been introduced to reduce the carbon dioxide (CO 2 ) concentration in the atmosphere is a technology that makes it possible to capture CO 2 and recycle byproducts as resources. However, existing mineral carbonation requires additional energy and costs, as it entails high temperature and high pressure reaction conditions. This study compared two processes which electrolyze NaCl and CaCl 2 solution to produce CO 2 absorbent needed to generate CaCO 3 , and which were conducted at room temperature and pressure unlike existing mineral carbonation. As a result, high-purity calcite was obtained through Process 1 using NaCl solution, and aragonite and portlandite were obtained in addition to calcite through Process 2 (two steps) using CaCl 2 solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.