We demonstrate a sensitive DNA biosensor based on a long period grating (LPG) formed by a photolithograph process on the surface of a side-polished fiber. The biomolecules of the biosensor were immobilized on the silica surface between LPG patterns. The resonance wavelength was red-shifted after the binding of the poly-L-lysine, probe ssDNA and target ssDNA to the sensor surface. The overall wavelength shift after the successful DNA hybridization was 1.82 nm. The proposed LPG-based DNA biosensor is approximately 2.5 times more sensitive than the previously reported fiber grating-based DNA biosensors.
We present a tunable photonic crystal fiber (PCF) directional coupler fabricated by a side-polishing method. The PCF directional coupler was modeled as a typical single-mode fiber-based directional coupler and analyzed using the improved effective-index method (IEIM). The characteristics of the PCF directional coupler such as the coupling coefficient and the coupling ratio were measured and found to be in good agreement with those predicted by the theoretical model. The PCF directional coupler exhibited an insertion loss of approximately 2 dB for a 3 dB coupler and was able to tune the coupling ratio between 0% and 100% by tilting the angle of the top side-polished quartz block against the fixed-bottom quartz block.
A meshed index profile method, which is based on the localized function method, is demonstrated for analyzing modal characteristics of photonic crystal fibers with arbitrary air-hole structures. The index profile of PCF, which is expressed as a sum of meshed unit matrix, is substituted to full wave equation. By solving this full wave equation, we obtain the modal characteristics of the PCF such as the mode field distribution, the birefringence and the waveguide dispersion. The accuracy of the proposed meshed index profile method (MIPM) is demonstrated by examining the effective index and the birefringence of the two degenerate fundamental modes in the PCF with a triangular air-hole lattice. The MIPM is not restricted to the PCF structure and will be useful in designing various PCF devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.