The epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases has been implicated in a variety of cancers. In particular, activating mutations such as the L858R point mutation in exon 21 and the small in-frame deletions in exon 19 of the EGFR tyrosine kinase domain are correlated with sensitivity to EGFR tyrosine kinase inhibitors in non-small cell lung cancer (NSCLC) patients. Clinical treatment of patients is limited by the development of drug resistance resulting mainly from a gatekeeper mutation (T790M). In this study, we evaluated the therapeutic potential of a novel, irreversible pan-HER inhibitor, HM781-36B. The results from this study show that HM781-36B is a potent inhibitor of EGFR in vitro, including the EGFR-acquired resistance mutation (T790M), as well as HER-2 and HER-4, compared with other EGFR tyrosine kinases inhibitors (erlotinib, lapatinib and BIBW2992). HM781-36B treatment of EGFR DelE746_A750-harboring erlotinib-sensitive HCC827 and EGFR L858R/T790M-harboring erlotinib-resistant NCI-H1975 NSCLC cells results in the inhibition of EGFR phosphorylation and the subsequent deactivation of downstream signaling proteins. Additionally, HM781-36B shows an excellent efficacy in a variety of EGFR-and HER-2-dependent tumor xenograft models, including erlotinib-sensitive HCC827 NSCLC cells, erlotinib-resistant NCI-H1975 NSCLC cells, HER-2 overexpressing Calu-3 NSCLC cells, NCI-N87 gastric cancer cells, SK-Ov3 ovarian cancer cells and EGFR-overexpressing A431 epidermoid carcinoma cancer cells. On the basis of these preclinical results, HM781-36B is the most potent pan-HER inhibitor, which will be advantageous for the treatment of patients with NSCLC including clinical limitation caused by acquired mutation (EGFR T790M), breast cancer and gastric cancer.
Introduction: Activating mutations of EGFR are well known as oncogenic driver mutations in lung adenocarcinoma. Currently, EGFR TKIs including Gefitinib and Erlotinib are used as the first line therapy in NSCLC patients harboring EGFR activating mutations. However, drug resistance caused by T790M mutation limits the efficacy of these 1st generation EGFR TKIs. Currently, some of the next generation EGFR TKIs are under investigation for the treatment of lung cancer patients having T790M mutation. In our current presentation, to obtain HM61713, an EGFR mutant selective inhibitor, as a clinical candidate and the evaluation of HM61713 for mutant EGFR cancer model will be introduced. Method: Novel analogues were designed and synthesized to find active compounds for the T790M mutation as well as EGFR activating mutations with good selectivity over wild- type EGFR. Finally, HM61713 was selected as a clinical candidate through multi-optimization processes including both in vitro and in vivo pharmacologcal studies. Results: HM61713 was designed as an irreversible kinase inhibitor having a Michael acceptor, which covalently binds to a cysteine residue near the kinase domain of mutant the EGFR. In a cell wash out test, HM61713 inhibited phospho-EGFR for a long duration with a half-life of over 24 hours. From in vitro study, HM61713 showed potent activities for H1975 (L858-T790M) and HCC827 (exon 19 del.) with GI50 values of 9.2 nM and 10 nM, respectively. Instead, it showed low potency for H358 (wild type EGFR NSCLC) with GI50 of 2,225 nM. In xenograft studies using H1975 and HCC827, HM61713 resulted in good efficacy without showing any side effects. Conclusion: HM61713 showed excellent in vitro and in vivo activities for H1975 harboring L858R-T790M mutation as well as HCC827 having exon 19 deletion mutation with selectivity over wild-type EGFR. Currently, HM61713 is undergoing phase I study (NCT01588145) for NSCLC patients after the failure of 1st generation EGFR TKIs in Korea. Citation Format: Kwang-Ok Lee, Mi Young Cha, Mira Kim, Ji Yeon Song, Jae-Ho Lee, Young Hoon Kim, Young-Mi Lee, Kwee Hyun Suh, Jeewoong Son. Discovery of HM61713 as an orally available and mutant EGFR selective inhibitor. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr LB-100. doi:10.1158/1538-7445.AM2014-LB-100
A novel series of (S)-1-acryloyl-N-[4-(arylamino)-7-(alkoxy)quinazolin-6-yl]pyrrolidine-2-carboxamides were synthesized and evaluated as Her-1/Her-2 dual inhibitors. In contrast to the Her-1 selective inhibitors, our novel compounds are irreversible inhibitors of Her-1 and Her-2 tyrosine kinases with the potential to overcome clinically relevant, mutation-induced drug resistance. The selected compounds (19c, 19d) showed excellent EGFR inhibition activity even toward the T790M mutation of Her-1 tyrosine kinase with excellent selectivity. The excellent pharmacokinetic profiles of these compounds in rats and their robust in vivo efficacy in an A431 xenograft model clearly demonstrate that they merit further investigation as novel therapeutic agents for EGFR-targeting treatment of solid tumors, especially Her-1 selective inhibitor-resistant non-small cell lung cancer.
In an effort to develop dual PPARalpha/gamma activators with improved therapeutic efficacy, a series of diaryl alpha-ethoxy propanoic acid compounds comprising two aryl groups linked by rigid oxime ether or isoxazoline ring were designed and synthesized and their biological activities were examined. Most of the compounds possessing an oxime ether linker were more potent PPARgamma activators than the lead PPARalpha/gamma dual agonist, tesaglitazar in vitro. Compound 18, one of the derivatives with an oxime ether linker, was found to selectively transactivate PPARgamma (EC 50 = 0.028 microM) over PPARalpha (EC 50 = 7.22 microM) in vitro and lower blood glucose in db/ db mice more than muraglitazar after oral treatment for 11 days.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.