In this paper, a novel vision-based nighttime vehicle detection approach is presented, combining state machines and downhill simplex optimization. In the proposed approach, vehicle detection is modeled as a sequential state transition problem; that is, vehicle arrival, moving, and departure at a chosen detection area. More specifically, the number of bright pixels and their differences, in a chosen area of interest, are calculated and fed into the proposed state machine to detect vehicles. After a vehicle is detected, the location of the headlights is determined using the downhill simplex method. In the proposed optimization process, various headlights were evaluated for possible headlight positions on the detected vehicles; allowing for an optimal headlight position to be located. Simulation results were provided to show the robustness of the proposed approach for nighttime vehicle and headlight detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.