In bacterial chemotaxis, transmembrane chemoreceptors, the CheA histidine kinase, and the CheW coupling protein assemble into signaling complexes that allow bacteria to modulate their swimming behavior in response to environmental stimuli. Among the protein-protein interactions in the ternary complex, CheA-CheW and CheW-receptor interactions were studied previously, whereas CheA-receptor interaction has been less investigated. Here, we characterize the CheA-receptor interaction in Thermotoga maritima by NMR spectroscopy and validate the identified receptor binding site of CheA in Escherichia coli chemotaxis. We find that CheA interacts with chemoreceptor in a manner similar to CheW, and the receptor binding site of CheA's regulatory domain is homologous to that of CheW. Collectively, the receptor binding sites in CheA-CheW complex suggest that conformational changes in CheA are required for assembly of the CheA-CheW-receptor ternary complex and CheA activation.
Eukaryotic elongation factor 2 kinase (eEF-2K), the only known calmodulin (CaM)-activated α-kinase, phosphorylates eukaryotic elongation factor 2 (eEF-2) on a specific threonine (Thr-56) diminishing its affinity for the ribosome and reducing the rate of nascent chain elongation during translation. Despite its critical cellular role, the precise mechanisms underlying the CaM-mediated activation of eEF-2K remain poorly defined. Here, employing a minimal eEF-2K construct (TR) that exhibits activity comparable to the wild-type enzyme and is fully activated by CaM in vitro and in cells, and using a variety of complimentary biophysical techniques in combination with computational modeling, we provide a structural mechanism by which CaM activates eEF-2K. Native mass analysis reveals that CaM, with two bound Ca ions, forms a stoichiometric 1:1 complex with TR. Chemical crosslinking mass spectrometry and small-angle X-ray scattering measurements localize CaM near the N-lobe of the TR kinase domain and the spatially proximal C-terminal helical repeat. Hydrogen/deuterium exchange mass spectrometry and methyl NMR indicate that the conformational changes induced on TR by the engagement of CaM are not localized but are transmitted to remote regions that include the catalytic site and the functionally important phosphate binding pocket. The structural insights obtained from the present analyses, together with our previously published kinetics data, suggest that TR, and by inference, wild-type eEF-2K, upon engaging CaM undergoes a conformational transition resulting in a state that is primed to efficiently auto-phosphorylate on the primary activating T348 en route to full activation.
SUMMARY
Binding of Ca2+-loaded calmodulin (CaM) activates eukaryotic elongation factor 2 kinase (eEF-2K) that phosphorylates eEF-2, its only known cellular target, leading to a decrease in global protein synthesis. Here, using an eEF-2K-derived peptide (eEF-2KCBD) that encodes the region necessary for its CaM-mediated activation, we provide a structural basis for their interaction. The striking feature of this association is the absence of Ca2+ from the CaM C-lobe sites, even under high Ca2+ conditions. eEF-2KCBD engages CaM largely through the C-lobe of the latter in an anti-parallel 1-5-8 hydrophobic mode reinforced by a pair of unique electrostatic contacts. Sparse interactions of eEF-2KCBD with the CaM N-lobe results in persisting inter-lobe mobility. A conserved eEF-2K residue (W85) anchors it to CaM by inserting into a deep hydrophobic cavity within the CaM C-lobe. Mutation of this residue (W85S) substantially weakens interactions between full-length eEF-2K and CaM in vitro and reduces eEF-2 phosphorylation in cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.