Numerous studies have demonstrated that tree survival is influenced by negative density dependence (NDD) and differences among species in shade tolerance could enhance coexistence via resource partitioning, but it is still unclear how NDD affects tree species with different shade-tolerance guilds at later life stages. In this study, we analyzed the spatial patterns for trees with dbh (diameter at breast height) ≥2 cm using the pair-correlation g(r) function to test for NDD in a temperate forest in South Korea after removing the effects of habitat heterogeneity. The analyses were implemented for the most abundant shade-tolerant (Chamaecyparis obtusa) and shade-intolerant (Quercus serrata) species. We found NDD existed for both species at later life stages. We also found Quercus serrata experienced greater NDD compared with Chamaecyparis obtusa. This study indicates that NDD regulates the two abundant tree species at later life stages and it is important to consider variation in species' shade tolerance in NDD study.
In Korea, damaging typhoons related to climate change have increased steadily since the 1990s. Red pine (Pinus densiflora) forests in Gwangneung Forest were greatly disturbed by typhoon Kompasu in 2010. A survey was carried out to clarify differences in ground beetle (Coleoptera: Carabidae) communities between forest gaps and undamaged forests. Ground beetles were sampled using pitfall traps from early May to late October 2011. Vegetation changes, litter layer, organic matter layer, and soil conditions were also measured. A total of 1035 ground beetles of 32 species were collected. Contrary to our expectation, species richness, abundance, and community structure of the ground beetles in forest gaps were similar to those in undamaged forests. Species richness and abundance of habitat type were also similar. However, species diversity and estimated species richness in forest gaps were significantly higher than in undamaged forests. These findings suggest that forest gaps formed by a typhoon did not lead to great change in ground beetle communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.