Due to the strengthening of air-quality regulations, researchers have been investigating methods to improve excavator energy efficiency. Many researchers primarily conducted simulation studies employing mathematical models to analyze the energy consumption of excavator systems, which is necessary to examine the fuel efficiency improvement margin and the improvement effect. However, to effectively study the improvement of excavator efficiency, the real-time energy consumption characteristics must be examined through simulations and analyses of actual equipment-based energy consumption. Accordingly, this study establishes an energy flow-down model for the entire excavator system based on actual equipment tests. A measurement system is built to measure the required data, thereby establishing an experimental methodology for modeling each component. This paper presents an excavator system energy flow-down methodology that integrates the energy flow-down model, measurement system, and experimental methodology. This methodology was applied to dig and dump operations, and the energy consumption characteristics were analyzed. An analysis of the operating modes indicates that 59.8% of the total fuel energy was consumed in the engine system, 17% in the hydraulic system, and 23.2% in the hydraulic actuation systems. The methodology can be used to help analysis of the fuel efficiency improvement margin under various conditions.
: Reduction of the atmospheric pressure in high altitude affects brake booster system which was operated by the difference between the intake pressure and the atmospheric pressure. So, braking system can not stably perform due to decrease of brake boost pressure. In this study, effects of altitude change on engine intake pressure was analyzed by prediction model of engine intake pressure which was studied previously. And engine intake pressure was simulated by simulation model in various driving conditions and environmental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.