Abstract:The main goal of osteoporosis treatment is prevention of osteoporosis-induced bone fracture. Dual-energy X-ray absorptiometry (DXA) and quantitative computed tomographic imaging (QCT) are widely used for assessment of bone mineral density (BMD). However, they have limitations in patients with special conditions. This study evaluated a method for diagnosis of osteoporosis using peripheral cone beam computed tomography (CBCT) to estimate BMD. We investigated the correlation between the ratio of cortical and total bone areas of the forearm and femoral neck BMD. Based on the correlation, we established a linear transformation between the ratio and femoral neck BMD. We obtained forearm images using CBCT and femoral neck BMDs using dual-energy X-ray absorptiometry (DXA) for 23 subjects. We first calculated the ratio of the cortical to the total bone area in the forearm from the CBCT images, and investigated the relationship with the femoral neck BMDs obtained from DXA. Based on this relationship, we further investigated the optimal forearm region to provide the highest correlation coefficient. We used the optimized forearm region to establish a linear transformation of the form to estimate femoral neck BMD from the calculated ratio. We observed the correlation factor of r = 0.857 (root mean square error = 0.056435 g/cm 2 ; mean absolute percentage error = 4.5105%) between femoral neck BMD and the ratio of the cortical and total bone areas. The strongest correlation was observed for the average ratios of the mid-shaft regions of the ulna and radius. Our results suggest that femoral neck BMD can be estimated from forearm CBCT images and may be useful for screening osteoporosis, with patients in a convenient sitting position. We believe that peripheral CBCT image-based BMD estimation may have significant preventative value for early osteoporosis treatment and management.
BackgroundImage artifacts affect the quality of medical images and may obscure anatomic structure and pathology. Numerous methods for suppression and correction of scattered image artifacts have been suggested in the past three decades. In this paper, we assessed the feasibility of use of information on scattered artifacts for estimation of bone mineral density (BMD) without dual-energy X-ray absorptiometry (DXA) or quantitative computed tomographic imaging (QCT).MethodsTo investigate the relationship between scattered image artifacts and BMD, we first used a forearm phantom and cone-beam computed tomography. In the phantom, we considered two regions of interest—bone-equivalent solid material containing 50 mg HA per cm−3 and water—to represent low- and high-density trabecular bone, respectively. We compared the scattered image artifacts in the high-density material with those in the low-density material. The technique was then applied to osteoporosis patients and healthy subjects to assess its feasibility for BMD estimation.ResultsThe high-density material produced a greater number of scattered image artifacts than the low-density material. Moreover, the radius and ulna of healthy subjects produced a greater number of scattered image artifacts than those from osteoporosis patients.ConclusionsAlthough other parameters, such as bone thickness and X-ray incidence, should be considered, our technique facilitated BMD estimation directly without DXA or QCT. We believe that BMD estimation based on assessment of scattered image artifacts may benefit the prevention, early treatment and management of osteoporosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.