This paper examines the onset and cessation dates of the rainy season over Ghana using rain gauge data from the Ghana Meteorological Agency (GMet) over the period of 1970-2012. The onset and cessation dates were determined from cumulative curves using the number of rainy days and rainfall amount. In addition, the inter-annual variability of the onset and cessation dates for each climatic zone was assessed using wavelet analysis. A clear distinction between the rainfall characteristics and the length of the rainy season in the various climatic zones is discussed. The forest and coastal zones in the south had their rainfall onset from the second and third dekads of March. The onset dates of the transition zone were from the second dekad of March to the third dekad of April. Late onset, which starts from the second dekad of April to the first dekad of May, was associated with the savannah zone. The rainfall cessation dates in the forest zone were in the third dekad of October to the first dekad of November, and the length of the rainy season was within 225-240 days. The cessation dates of the coastal zone were within the second and third dekad of October, and the length of rainy season was within 210-220 days. Furthermore, the transition zone had cessation dates in the second to third dekad of October, and the length Climate 2015, 3 417 of the rainy season was within 170-225 days. Lastly, the savannah zone had cessation dates within the third dekad of September to the first dekad of October, and the length of rainy season was within 140-180 days. The bias in the rainfall onset, cessation and length of the rainy season was less than 10 days across the entire country, and the root mean square error (RMSE) was in the range of 5-25 days. These findings demonstrate that the onset derived from the cumulative rainfall amount and the rainy days are in consistent agreement. The wavelet power spectrum and its significant peaks showed evidence of variability in the rainfall onset and cessation dates across the country. The coastal and forest zones showed 2-8-and 2-4-year band variability in the onsets and cessations, whereas the onset and cessation variability of the transition and savannah zones were within 2-4 and 4-8 years. This result has adverse effects on rain-fed agricultural practices, disease control, water resource management, socioeconomic activities and food security in Ghana.
Inter-annual variability and trends of annual/seasonal precipitation totals in Ghana are analyzed considering different gridded observational (gaugeand/or satellite-based) and reanalysis products. A qualitycontrolled dataset formed by fourteen gauges from the Ghana Meteorological Agency (GMet) is used as reference for the period 1961-2010. Firstly, a good agreement is found between GMet and all the observational products in terms of variability, with better results for the gauge-based products-correlations in the range of 0.7-1.0 and nearly null biases-than for the satellitegauge merged and satellite-derived products. In contrast, reanalyses exhibit a very poor performance, with correlations below 0.4 and large biases in most of the cases. Secondly, a Mann-Kendall trend analysis is carried out. In most cases, GMet data reveal the existence of predominant decreasing (increasing) trends for the first (second) half of the period of study, 1961-1985 (1986-2010). Again, observational products are shown to reproduce well the observed trends-with worst results for purely satellite-derived data-whereas reanalyses lead in general to unrealistic stronger than observed trends, with contradictory results (opposite
Rainfall variability plays an important role in many socioeconomic activities such as food security, livelihood and farming in Ghana. Rainfall impact studies are thus very crucial for proper management of these key sectors of the country. This paper examines the seasonal and annual rainfall variability in the four agro-ecological zones of Ghana from the CHIRPS V2 rainfall time series spanning a period of 1981-2015. The rainfall indices were computed with the aid of the FClimDex package whereas the trends of these indices were further tested using the Mann Kendall trend test. The results show good agreement (r ≥ 0.7) between CHIRPS V2 and gauge in almost all portions of country although high biases were observed especially in DJF season over parts of the Northeastern (NE) portions of the country. The mean seasonal rainfall climatology over the country is observed to be in the range of 20-80 mm, 60-200 mm, 100-220 mm and 40-180 mm in DJF, MAM, JJA and SON seasons respectively with high intensities of rainfall dominating Southwestern portions of the country. The trend analysis revealed positive trends of consecutive dry days in the Transition, Forest and Coastal zones and negative trends in the Savannah zone of the country. Decreasing trends of consecutive wet days are observed over the Savannah, Transition and Coastal zones whereas increasing trends dominate the Forest zone. Savannah, Forest and Transition zones show weak increasing trends of the number of heavy rainfall days whilst weak decreasing trends are observed over the Coastal zone of the country. Similarly, weak increasing trends of the number of very heavy rainfall days are observed over all the agro-ecological zones except in the Transition zone. It is observed that the annual wet day rainfall total has increasing trend in the Savannah and Forest zones of the country whereas decreasing trends cover the remainder of the zones. The trends of these indices in the agro-ecological zones were all significant at a significant value of 0.05. This paper assessed the performance of the CHIRPS V2 rainfall data over the region
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.