Liquefied petroleum gas (LPG) sprays and diffusion flames are investigated in a constant volume combustion chamber having an impingement plate. The spray and flame images are visualized and compared with diesel and gasoline images over a wide range of ambient pressure. The high-speed digital camera is used to take the flame images. The injection pressure is generated by a Haskel airdriven pump, and the initial chamber pressure is adjusted by the amount of pumping air. The LPG spray and flame photographs are compared with those of gasoline and diesel fuel at the same conditions, and then the spray and flame development behaviour is analysed. The spray photographs show that the dispersion characteristics of LPG spray are sensitive to the ambient pressure. In a low initial chamber pressure LPG fuel in the liquid phase evaporates quickly and does not reach down easily to the impinging plate having a hot coil for ignition. That makes the temperature and equivalence ratio low near the ignition coil, thus making ignition difficult. On the other hand, in a high initial chamber pressure the spray leaving the nozzle gathers around the ignition site after impinging on the plate, which makes an intense flame near the plate. If applied to small-sized direct injection engines that are not able to avoid spray impinging on a cylinder wall, LPG will have faster and cleaner combustion than diesel or gasoline fuels. However, the chamber geometry should be carefully designed to enable a sufficient amount of vaporized fuel to get to the ignition site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.