The jasmonates (JAs) comprise a family of plant hormones that regulate several developmental processes and mediate responses to various abiotic and biotic stresses, including pathogens. JA signalling is manipulated by several strains of the bacterial pathogen Pseudomonas syringae, including P. syringae strain DC3000, using the virulence factor coronatine (COR) as a mimic of jasmonyl-L-isoleucine (JA-Ile). To better understand the JA-Ile-mediated processes contributing to P. syringae disease susceptibility, it is important to investigate the regulation of JA signalling during infection. In Arabidopsis thaliana, JASMONATE ZIM-DOMAIN (JAZ) proteins are negative regulators of JA signalling. The transcription factor JASMONATE INSENSITIVE1 (JIN1/ATMYC2) has been implicated in the regulation of JAZ gene expression. To investigate the regulation of JAZ genes during P. syringae pathogenesis, we examined JAZ gene expression during infection of Arabidopsis by DC3000. We found that eight of the 12 JAZ genes are induced during infection in a COR-dependent manner. Unexpectedly, the induction of the majority of JAZ genes during infection was not dependent on JIN1, indicating that JIN1 is not the only transcription factor regulating JAZ genes. A T-DNA insertion mutant and an RNA interference line disrupted for the expression of JAZ10, one of the few JAZ genes regulated by JIN1 during infection, exhibited enhanced JA sensitivity and increased susceptibility to DC3000, with the primary effect being increased disease symptom severity. Thus, JAZ10 is a negative regulator of both JA signalling and disease symptom development.
Mycorrhizas play an important role in plant growth and development. In mycorrhizal symbioses, fungi supply soil mineral nutrients, such as nitrogen and phosphorus, to their host plants in exchange for carbon resources. Plants gain as much as 80% of mineral nutrient requirements from mycorrhizal fungi, which form associations with the roots of over 90% of all plant species. Orchid seeds lack endosperms and contain very limited storage reserves. Therefore, the symbiosis with mycorrhizal fungi that form endomycorrhizas is essential for orchid seed germination and protocorm development under natural conditions. The rapid advancement of next-generation sequencing contributes to identifying the orchid and fungal genes involved in the orchid mycorrhizal symbiosis and unraveling the molecular mechanisms regulating the symbiosis. We aim to update and summarize the current understanding of the mechanisms on orchid-fungus symbiosis, and the main focus will be on the nutrient exchange between orchids and their fungal partners. Appl. Sci. 2019, 9, 585 2 of 14 sheath, which functions as a plant-fungus interface, surrounding the epidermal and outer cortical cells. The interface is used for the bidirectional nutrient transfer between a plant and its fungal partner [7]. (2) Endomycorrhiza: the fungi possess specific types of hyphae such as arbuscules and coils to penetrate and grow inside of the root cells of host plants [3]. Endomycorrhizas can be further classified as ectendomycorrhizas, ericoid, arbutoid, monotropoid, orchid and arbuscular mycorrhizas based on the specificity of plant families and the type of internal hyphae [3,8]. Ectomycorrhizas are also alternatively represented as arbuscular mycorrhizas because the class is the most prevalent type of mycorrhizae, as shown in approximately 71% of all vascular plant species [1,9].The Orchidaceae is the largest family of flowering plants including over 700 genera and about 30,000-35,000 species and still hundreds of new species displaying variable floral features, lifestyles, habitat distributions and trophic patterns are being discovered and developed every year [10,11]. Mycorrhizas in orchid species are highly important throughout their whole life including germination and further development. In this article, we provide a brief review of the roles of mycorrhizas in orchid growth and development and the current understanding of the mechanisms in nutrient exchange between orchids and their fungal partners.
Wound-induced protein kinase (WIPK) is a tobacco (Nicotiana tabacum) mitogen-activated protein kinase known to play an essential role in defense against wounding and pathogens, although its downstream targets have yet to be clarified. This study identified a gene encoding a protein of 648 amino acids, which directly interacts with WIPK, designated as N. tabacum WIPK-interacting factor (NtWIF). The N-terminal region with approximately 250 amino acids showed a high similarity to the plant-specific DNA binding domain, B3, but no other similarity with known proteins. The C terminus of approximately 200 amino acids appeared to be essential for the interaction with WIPK, and a Luciferase-reporter gene assay using Bright Yellow 2 cells indicated the full-length protein to possess trans-activation activity, located to the middle region of approximately 200 amino acids. In vitro phosphorylation assays indicated that WIPK efficiently phosphorylates the full-length protein and the N terminus but not the C terminus. When full-length NtWIF was coexpressed with WIPK in Bright Yellow 2 cells, the Luciferase transcriptional activity increased up to 5-fold that of NtWIF alone, whereas no effect was observed with a kinase-deficient WIPK mutant. Transcripts of NtWIF began to simultaneously accumulate with those of WIPK 30 min after wounding and 1 h after the onset of hypersensitive response upon tobacco mosaic virus infection. These results suggest that NtWIF is a transcription factor that is directly phosphorylated by WIPK, thereby being activated for transcription of target gene(s) involved in wound and pathogen responses.
Phenotypic analyses of a new ethylene response factor, ERF19, involved in the negative regulation of Arabidopsis pattern-triggered immunity.
NtWIF is a transcription factor activated upon phosphorylation by wound-induced protein kinase (WIPK) in tobacco plants. Transgenic tobacco plants overexpressing NtWIF exhibited constitutive accumulation of transcripts for pathogenesis-related genes, PR-1a and PR-2. Salicylic acid levels were 50-fold higher than those in wild-type plants. The levels of jasmonic acid and IAA did not significantly differ, while an increase of ABA upon wounding was delayed by 3 h in the transgenics. When challenged with tobacco mosaic virus, lesions developed faster and were smaller in the transgenic plants. The results suggest that NtWIF is likely to influence salicylic acid biosynthesis, being located downstream of WIPK.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.