Although natural products have been a particularly rich source of human medicines, activity-based screening results in a very high rate of rediscovery of known molecules. Based on the large number of natural product biosynthetic genes in microbial genomes, many have proposed "genome mining" as an alternative approach for discovery efforts; however, this idea has yet to be performed experimentally on a large scale. Here, we demonstrate the feasibility of large-scale, high-throughput genome mining by screening a collection of over 10,000 actinomycetes for the genetic potential to make phosphonic acids, a class of natural products with diverse and useful bioactivities. Genome sequencing identified a diverse collection of phosphonate biosynthetic gene clusters within 278 strains. These clusters were classified into 64 distinct groups, of which 55 are likely to direct the synthesis of unknown compounds. Characterization of strains within five of these groups resulted in the discovery of a new archetypical pathway for phosphonate biosynthesis, the first (to our knowledge) dedicated pathway for H-phosphinates, and 11 previously undescribed phosphonic acid natural products. Among these compounds are argolaphos, a broad-spectrum antibacterial phosphonopeptide composed of aminomethylphosphonate in peptide linkage to a rare amino acid N 5 -hydroxyarginine; valinophos, an N-acetyl L-Val ester of 2,3-dihydroxypropylphosphonate; and phosphonocystoximate, an unusual thiohydroximate-containing molecule representing a new chemotype of sulfur-containing phosphonate natural products. Analysis of the genome sequences from the remaining strains suggests that the majority of the phosphonate biosynthetic repertoire of Actinobacteria has been captured at the gene level. This dereplicated strain collection now provides a reservoir of numerous, as yet undiscovered, phosphonate natural products.natural products | genome mining | phosphonic acid | antibiotic
The biosynthetic origin of a unique hydrazide moiety in the phosphonate natural product fosfazinomycin is investigated.
Fosfazinomycin and kinamycin are natural products that contain nitrogen–nitrogen (N–N) bonds but that are otherwise structurally unrelated. Despite their considerable structural differences, their biosynthetic gene clusters share a set of genes predicted to facilitate N–N bond formation. In this study, we show that for both compounds, one of the nitrogen atoms in the N–N bond originates from nitrous acid. Furthermore, we show that for both compounds, an acetylhydrazine biosynthetic synthon is generated first and then funneled via a glutamyl carrier into the respective biosynthetic pathways. Therefore, unlike other pathways to N–N bond-containing natural products wherein the N–N bond is formed directly on a biosynthetic intermediate, during the biosyntheses of fosfazinomycin, kinamycin, and related compounds, the N–N bond is made in an independent pathway that forms a branch of a convergent route to structurally complex natural products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.