Energy sustainability is one of the key questions that drive the debate on cities’ and urban areas development. In parallel, artificial intelligence and cognitive computing have emerged as catalysts in the process aimed at designing and optimizing smart services’ supply and utilization in urban space. The latter are paramount in the domain of energy provision and consumption. This paper offers an insight into pilot systems and prototypes that showcase in which ways artificial intelligence can offer critical support in the process of attaining energy sustainability in smart cities. To this end, this paper examines smart metering and non-intrusive load monitoring (NILM) to make a case for the latter’s value added in context of profiling electric appliances’ electricity consumption. By employing the findings in context of smart cities research, the paper then adds to the debate on energy sustainability in urban space. Existing research tends to be limited by data granularity (not in high frequency) and consideration of about six kinds of appliances. In this paper, a hybrid genetic algorithm support vector machine multiple kernel learning approach (GA-SVM-MKL) is proposed for NILM, with consideration of 20 kinds of appliance. Genetic algorithm helps to solve the multi-objective optimization problem and design the optimal kernel function based on various kernel properties. The performance indicators are sensitivity (Se), specificity (Sp) and overall accuracy (OA) of the classifier. First, the performance evaluation of proposed GA-SVM-MKL achieves Se of 92.1%, Sp of 91.5% and OA of 91.8%. Second, the percentage improvement of performance indicators using proposed method is more than 21% compared with traditional kernel. Third, results reveal that by keeping different modes of electric appliance as identical class label, the performance indicators can increase to about 15%. Forth, tunable modes of GA-SVM-MKL classifier are proposed to further enhance the performance indicators up to 7%. Overall, this paper is a bold and novel contribution to the debate on energy utilization and sustainability in urban spaces as it integrates insights from artificial intelligence, IoT, and big data analytics and queries them in a context defined by energy sustainability in smart cities.
Abstract:To promote sustainable development, the smart city implies a global vision that merges artificial intelligence, big data, decision making, information and communication technology (ICT), and the internet-of-things (IoT). The ageing issue is an aspect that researchers, companies and government should devote efforts in developing smart healthcare innovative technology and applications. In this paper, the topic of disease diagnosis in smart healthcare is reviewed. Typical emerging optimization algorithms and machine learning algorithms are summarized. Evolutionary optimization, stochastic optimization and combinatorial optimization are covered. Owning to the fact that there are plenty of applications in healthcare, four applications in the field of diseases diagnosis (which also list in the top 10 causes of global death in 2015), namely cardiovascular diseases, diabetes mellitus, Alzheimer's disease and other forms of dementia, and tuberculosis, are considered. In addition, challenges in the deployment of disease diagnosis in healthcare have been discussed.
It has been witnessed that supportive learning has played a crucial role in educational quality enhancement. School and family tutoring offer personalized help and provide positive feedback on students' learning. Predicting students' performance is of much interest which reflects their understanding on the subjects. Particularly it is desired students to manage well in fundamental knowledge in order to build a strong foundation for post-secondary studies and career. In this paper, improved conditional generative adversarial network based deep support vector machine (ICGAN-DSVM) algorithm has been proposed to predict students' performance under supportive learning via school and family tutoring. Owning to the nature of the students' academic dataset is generally low sample size. ICGAN-DSVM offers dual benefits for the nature of low sample size in students' academic dataset in which ICGAN increases the data volume whereas DSVM enhances the prediction accuracy with deep learning architecture. Results with 10-fold cross-validation show that the proposed ICGAN-DSVM yields specificity, sensitivity and area under the receiver operating characteristic curve (AUC) of 0.968, 0.971 and 0.954 respectively. Results also suggest that incorporating both school and family tutoring into the prediction model could further improve the performance compared with only school tutoring and only family tutoring. To show the necessity of ICGAN and DSVM, comparison has been made between ICGAN and traditional conditional generative adversarial network (CGAN). Also, the proposed kernel design via heuristic based multiple kernel learning (MKL) is compared with typical kernels including linear, radial basis function (RBF), polynomial and sigmoid. The prediction of student's performance with and without GAN is presented which is followed by comparison with DSVM and with traditional SVM. The proposed ICGAN-DSVM outperforms related works by 8-29% in terms of performance indicators specificity, sensitivity and AUC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.