Burrs form due to the plastic deformation of materials during machining processes, such as milling and drilling. Deburring can be very difficult when the burrs are not easily accessible for removal. In this study, abrasive flow machining (AFM) was adopted for deburring the edges of milling specimens. Based on the experimental observations on AL6061 specimens, the deburring performance was characterized in terms of flow speed, the local curvature of the streamline near the burr edge, and shear stress. A new objective function that can predict the extent of deburring is proposed based on these characteristics and validated through milling burr edge erosion tests by abrasive flow. Based on the assumption that the flow component is tangential to the burr edge has relatively little contribution to the edge erosion, an attempt was made for the application of the new objective function to the three-dimensional burr edge formed by two intersecting holes drilled with offset. The deburring test results and predictions from three-dimensional computational fluid dynamics’ (CFD) simulations were in reasonable agreement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.