A compact wavelength multiplexing technique is proposed and experimentally investigated to improve the efficiency of a full-color holographic diffuser using photopolymer. The exposure responses of a monochromatic hologram and a three wavelength multiplexed hologram recorded in photopolymer film are presented. The time-scheduled exposure energies at wavelengths of 633, 532, and 473 nm were chosen to optimize the uniform diffraction efficiency of the wavelength multiplexed hologram. These three wavelength iterative sequences of exposures are applied to achieve a specific color balance for a multicolor holographic diffuser. The experimental results confirm that the fabrication method is well suited to the manufacture of holographic diffusers for full-color display applications.
A novel and effective simultaneous recording method, to the best of our knowledge, is proposed for improving the diffraction efficiency and uniformity of full-color holographic optical elements (HOE) using the Bayfol HX102 photopolymer. To improve the diffraction efficiency of a full-color HOE, it is important to find the optimal recording beam intensity taking into account the initial and late responses of the medium. The range of optimal beam intensity for recording full-color HOE can be found experimentally by analyzing the inhibition period and response characteristics of the recording medium for three wavelengths. Through this method, a full-color HOE with an average diffraction efficiency of about 56.81% and a standard deviation of about 1.7% was implemented in a single layer photopolymer.
It is difficult to find the micromirror array with desired specifications for augmented-reality displays, and the custom fabricating methods are complicated and unstable. We propose a novel, to our knowledge, three-dimensional see-through augmented-reality display system using the holographic micromirror array. Unlike the conventional holographic waveguide-type augmented-reality displays, the proposed system utilizes the holographic micromirror array as an in-coupler, without any additional elements. The holographic micromirror array is fabricated through the simple, effective, and stable method of applying the total internal reflection-based hologram recording using a dual-prism. The optical mirror and microlens array are set as references, and the specifications can be customized. It reconstructs a three-dimensional image from a displayed elemental image set without using any additional device, and the user can observe a three-dimensional virtual image while viewing the real-world objects. Thus, the principal advantages of the existing holographic waveguide-type augmented-reality system are retained. An optical experiment confirmed that the proposed system displays three-dimensional images exploiting the augmented-reality system simply and effectively.
A surface-normal input/output volume holographic grating coupler (VHGC) operating at 1550nm wavelength region by using a 10μm-thick DuPont photopolymer film is designed and fabricated. The angular and wavelength responses of the input/output VHGC are investigated in order to validate applicability of this device in integrated optics and optical communications. The effect of incident-beam position on the output reflectance to determine optimum condition for input coupling is also presented. The fabricated input/output VHGC exhibited an angular selectivity of ~0.027°, a wavelength selectivity of ~0.8 nm, and an output peak reflectance of 34.13%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.